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1 Introduction 

There are a large number of papers released in the last few years in the area of solid 
modeling. The intent of the document is to give an overview of a selection of these papers. The 
contents are simplified and some notations are different to the papers. Please refer to the papers 
for special details.  

The topics are not clearly separated from each other. Nevertheless, I have tried to sort the 
papers in three sections. Section two is about methods about volumetric modeling. Section three 
deals with algorithms which use topological information to construct or work with the models. 
Section four presents methods about modeling with polygonal meshes. 

2 Volumetric Modeling methods 

2.1 Fast Free-Form Volume Deformation Using Inverse-Ray-Deformation 
Real-time rendering of volume data has become possible due to the computing power 

available today. This paper deals with the extending of the possibilities the known volume 
rendering techniques offer by introducing a new way to render the volume data enabling to 
deform the data by an attached Free-form-deformation (FFD) without the need to perform the 
time-consuming deformation on the object itself. 

For the FFD-Grid, the uniform B-spline presentation is used. The deformation is never 
applied to the object itself. Instead, when the object is rendered, each ray that is cast to calculate a 
pixel of the picture to be produced is inverse deformed by the FFD. 

This idea is implemented as follows. To calculate the deformed ray, some equidistant points 
are inverse deformed by the FFD. Afterwards, because of the deformation, the distances between 
deformed points must not be equal any more. To correct this, new points are calculated by linear 
interpolation between two points that belong together. The number of points created is adapted 
to the distance between the deformed points. In the end, most likely there will be some distances 
between newly calculated points, which’s distances are not equal. This calculated ray is traversed 
like the rays in normal volume rendering methods using the low albedo model. 

Well known methods to speed up normal volume data rendering like early-ray-termination, 
which means to stop traversing a ray when its density gets high enough to be accepted as opaque 
from the user, or space-leaping, to make several steps at once if the space in between is empty, 
can be adapted to be used in the method. 
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It is obvious that this only approximates the real inversion of the ray. It can be accepted that 
the ray is traversed in small steps, at least, if they get smaller or equal to 0.5 * voxel size, the error 
gets minimal. This is expressed in the Shannon Theorem. However, a problem exists due to the 
linear interpolation after the inverse FFD. The position of a point may be wrong, especially if the 
deformation defined by the FFD-Grid is big. No error calculation is given in the paper. If this 
error is acceptable or not depends on the application the method should be used for. In medical 
applications, small errors can result in big problems. 

Another error of the described method lies in the implementation of the ideas explained 
above. To calculate the inverse deformed point of a point x by the FFD, the authors of the paper 
use the following formula (the notation slightly differs from the paper): 

 
 )(2))(()(1 xFFDxxxFFDxxFFD −=−−=−  (1) 
 
Furthermore, the following formula always holds: 
 
 xxFFDFFD =− ))((1  (2) 
 
Replacing FFD-1 by the first formula results in: 
 
 xxFFDFFDxFFD =− ))(()(2  (3) 
 
It can be easily seen that this formula does not hold for any point x. As a result, the first 

formula is essentially wrong and can lead to strange rendering results. As a simple example of the 
errors possible to produce, you can think of rays that intersect each other. This is not allowed.  

To correct this error you have to calculate the real inverse of the FFD. I do not know if this 
is easier than applying the deformation to the object itself. In this case, the rendering time will 
not be shorter than normal volume data rendering techniques. Additionally, normal rendering 
would allow adding other objects to the scene; these will not be rendered correctly if the 
deformation should not be applied to the other objects. Further on, this method does not use the 
available features of today’s hardware accelerators. Finally, there is no speed comparison between 
normal deformation, rendering and their method. But the idea to use an FFD to deform volume 
data is a good idea. It can be used e.g. to manually animate medical data sets. However, there is 
nothing about that in the document.  

2.2 Tetrahedron Based, Least Squares, Progressive Volume Models with 
Application to Freehand Ultrasound Data 

This paper describes a method to reconstruct a three dimensional volumetric model from 
several two-dimensional ultrasonic pictures and their position in space. The model’s resolution is 
adapted to the ultrasonic data available at a specific position. 

To capture the ultrasonic data a standard ultrasonic probe is used in combination with a 
position tracker. The collected images are transformed and scaled into a three-dimensional unit 
cube, which is initially divided in 6 congruent tetrahedrons. (One way they describe to do this is 
to insert an edge from (0,0,0) to (1,1,1) and one edge on each side of the cube having one vertex 
(0,0,0) or (1,1,1).)  

To calculate the vertex intensities a global least square error approximation is used. The 
function to minimize is (there is a small mistake in the paper, this is the correct version): 
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Where M is the number of points acquired from the ultrasonic data, N the number of 

vertices in the mesh, Ii the intensity at vertex vi, dj the three dimensional position of point j of the 
ultrasonic data, ijji v δ=Φ )(  and F(p) the intensity of the ultrasonic data at position p. 

In order to minimize this function, the Cartesian coordinates are replaced with barycentric 
coordinates by a function )( pBT

v  that returns the barycentric coordinates of p corresponding to 
v if p is inside T, 0 otherwise. 

The computation results in the problem of least square solving the following system of 
equations 
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Because of the size of this system, it cannot be solved with direct matrix inverse methods. A 

better way to do this is to use a modification of the Gauss-Seidel iterative method. This is faster 
than the first method and can be optimized to require less memory because the matrix A is not 
changed during the optimization so the elements of A must not be kept in memory, instead they 
can be calculated on demand. 

After this calculation for each tetrahedron the error inside it is calculated as follows: Every 
tetrahedron has a list of points dj from the images that lie inside of it. The actual intensity of a 
point inside the tetrahedron is linear interpolated between the vertexes of it. Using barycentric 
coordinates pi of p this interpolation is 
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The error is defined as the normalized sum of the least square error between the interpolated 

intensity and the intensity acquired from the images over all points in the tetrahedron (there is a 
small mistake in the formula in the paper, I guess this is what they meant): 
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Where DTi is the number of data points inside the tetrahedron Ti and F(p) is the intensity 

from the captured data at p. 
If the following sum is below a specified value, the construction process is stopped: 
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Otherwise, the 5% of the tetrahedron with the biggest error are divided along their longest 
edge and the process is repeated, starting with global solving of (5) with the new vertexes. During 
the split process, the barycentric coordinates have to be recalculated and in the end, a refinement 
process has to be applied to remove all pairs of edges with different lengths that lie on each 
other. This may result in strange effects during rendering. For other special details, please refer to 
the original document. 

The structure presented to store the volume data has several advantages. Its resolution is 
adaptive to the amount of data that should be stored in it and can recursively extended with new 
data. However, the reconstruction process does not correct small errors produced during 
capturing the data. The information acquired from the positional tracker might not be perfect so 
some calibration of the different images in space might be useful. Otherwise these small errors 
result in smoothing effects, can be seen in Figure 8 of the paper, or create displacements, see 
Figure 9 in the paper. An artery would not have such a wavy boundary as shown in this 
reconstruction. There is no use in medical practice for this system if small details get lost or get 
deformed like this. Additionally, during an ultrasonic examination, the patient is asked to move a 
little bit or the probe is pressed a bit inside the body to see more of a deeper organ or the patient 
breaths. This deforms the material and therefore the different images cannot be used to 
reconstruct the object with this method. This error gets even bigger, if a moving object is 
scanned, like a heart. Since the different images are not taken simultaneously, you will not see 
anything in the reconstruction. 

 

3 Topological Modeling methods 

3.1 Structural Operators for Modeling 3-Manifolds 
This paper introduces the Morse Operators. They are able to build and unbuild any 

combinatorial orientable three-dimensional manifolds embedded in Rn (n>2). Additionally, a 
suitable data structure for the representation of three-manifolds is presented. 

The main theory, the morse operators are based on, is: 
“Every compact orientable 3-manifold with or without boundary has a handle 

decomposition, i.e., it can be obtained by attaching a handle to a sequence of compact orientable 
3-manifolds with boundary starting with a 3-ball.” 

Where a handle describes the identification between two boundary faces, all vertices and 
edges that are not incident to both boundary faces become identified, too. 

There are 5 types of identifications that can be applied, for each of them exists a Morse 
operator, which builds a new manifold with the operation applied. 

1) “The faces are on different three-manifolds: OMV1 
2) The faces are on different boundary surface components of a three-manifold: OMV2 
3) The faces are on the same boundary surface component of a three-manifold and none 

of its edges are incident to both faces: OMV3 
4) The faces are on the same boundary surface component of a three-manifold and 

some of its edges are incident to both faces. OMV4 
5) The faces are on the same boundary surface component of a three-manifold and all of 

its edges are incident to both faces. OMV5” 
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 Figure 1: The five Morse operators 

 
Additionally, for each operator exists an inverse operator OIMVx. 
The Handle-Face data structure described in the rest of the paper is a hierarchical 

representation of an object, that allows to apply these five operators easily. 

3.2 Dealing with Topological Singularities in Volumetric Reconstruction 
This paper introduces a new data structure, called “Handle-Strata”, to represent three-

dimensional stratified manifolds based on Morse theory, presented in the previous Paragraph. 
This data structure is used for volumetric data reconstruction from planar sections, avoiding 
topological singularities. The Handle Strata data structure is a replacement for the Handle-Face 
data structure, specialised for this application. 

The Handle Strata structure is a hierarchical representation of the object to be described. 
Object representations are built and unbuilt on this data structure by Morse Operators, which 
correspond to connecting handles on manifolds with boundary. 

The inputs for the following algorithm are different slices belonging to an object that should 
be reconstructed. First of all, the two-dimensional contours on the different slices are extracted. 
Therefore, equivalents to OMV1, OMV3, OMV4 and OMV5 are used. These were originally 
defined in the other paper for three-manifolds only and instead of a 3-ball a 2-ball (disc) is 
initially used. They are called local operators. Then a restricted Delauney triangulation is applied 
between the slices. This is the implementation of another OMV1 equivalent, which connects two 
2-manifolds to one 3-manifold: 

1) “Build a 3-dimensional Delauney triangulation D using the vertices of all contours, 
2) Mark the edges of the contours that are not contained on D, 
3) Subdivide all marked edges, inserting new vertices on the contours, 
4) Make local modifications on D to obtain a new Delauney triangulation that includes 

those new vertices, 
5) Repeat these steps until the triangulation contains all contour edges.” 

Afterwards all produced tetrahedrons with at least one external edge, meaning edges, that lie 
in the plane of one of the two slices between which the tetrahedron is constructed and lie outside 
any contour on these slices, are removed. This step may produce singularities, which are removed 
as follows: If the singular edge lies in a contour, reinsert the tetrahedron and split it at the 
external edge. Move the newly created vertex in between the two slices. Otherwise, if the singular 
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edge lies on a contour, split the connected components. In the end, the produced meshes are 
merged together to one object. Here, the real OMV1 is used. The last two operators are referred 
to as global operators in the paper. 

The presented method is useful to avoid singularities in the reconstruction of volumetric data 
from strata, which otherwise could cause trouble in the later use of the reconstructed object. In 
comparison, the presented results seem intuitively better than the results created from the other 
methods from Nonato and Tavares or Nuages. Additionally the Handle-Strata data structure is 
flexible enough to handle these other methods too. 

3.3 Topology Matching for Fully Automatic Similarity Estimation of 3D 
Shapes 

The document presents a method to evaluate the similarity between two objects given as 
meshes. The calculated values are invariant to transformations of the objects. 

Similarity is compared with respect to the topological attributes of the objects. Since many 
still existing objects only exist as meshes without any topological information, this information is 
derived from the mesh. To get this information, a multiresolutional Reeb Graph (MRG) is 
constructed. A Reeb Graph is defined as follows: 

“Let RC →:µ  be a continuous function defined on an object C. The Reeb graph is the 
quotient space of the graph of µ  in RC ×  by the equivalent relation ))(,(~))(,( 2211 XXXX µµ  
which holds if and only if )()( 21 XX µµ = , and 1X  and 2X  are in the same connected 
component of ))(( 1

1 Xµµ − .” 
The main difference to the multiresolutional Reeb graph lies in the allocation of the scope of 

µ , R , in discrete intervals. This is necessarily to be able to calculate the multiresolutional Reeb 
graph for a specific object. The construction of the MRG begins with the construction of a Reeb 
graph having the finest resolution. 

 

  
 Figure 2: Construction of a MRG (left), MRG using a height function (right) 
 
The function µ  itself has to fulfil some attributes. It has to be invariant to transformations 

and uniform scaling. Let us have a look at the following function: 
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Where g(v, p) returns the geodesic distance between v and p on the surface S. To achieve 

invariance to uniform scaling, this function is normalized to 
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The denominator is not )(min)(max)( ppSrange SpSp µµ ∈∈ −= , not to amplify errors 

when )(Srange  is small. This function is actually calculated by discretisation of the surface 
triangles and approximating the calculation of the geodesic distance g(v, p) by adding the length 
of path along the edges or shortcuts between the two points of v and p. 

 

 

     
 Figure 3: Examples of function µ  
 
For both objects to be compared, such an MRG is build. First of all, beginning with the 

lowest resolution, the nodes of each MRG are matched and adaptively refined. Approximately 
the more nodes of the graphs are matched, the more similar the two objects are evaluated. A 
matching function which additionally considers different attributes, which can be defined for the 
nodes, e.g. material for example, can be specified. Please refer to the paper for more details. 

The described method is useful for comparison between two objects with unknown 
topological information, only having the mesh. The application mentioned in the paper, i.e. the 
use as a key for searching for similar objects in a database is a good idea, but it is not developed 
enough. The algorithm presented in the paper has a run time complexity of O(n), where n is the 
number of objects in the database, because the objects have to be compared with every object in 
the database. E.g. the average time their implementation requires to search in a database with 230 
objects is 12sec. But a real database would consist of perhaps thousand times more of objects. To 
use this method for database queries, it has to be extended by some kind of merged MRG, where 
all MRGs of the objects in the database are merged in one big MRG which is processed in the 
query. Early determination of wrong objects is required instead of calculation of the similarity for 
every unsimilar object. So their method could probably be extended to be used as an index over 
the objects in the database und a run time complexity of O(log n) might be possible. Further 
research is required. 

3.4 Boundary Representation Models: Validity and Rectification 
This paper describes a method to validate und rectify solid models, represented by the typical 

B-rep data structure. Topological information is used to rectify the object by reconstruction. 
Interval solids care about numerical robustness. 
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 Figure 4: The B-rep data structure 
 

A B-rep data structure is shown in Figure 4. The structure is built hierarchically. Due to 
numerical errors created by operations that were applied to the object during the modeling phase, 
the data in the structure can become inconsistent. E.g. an underlying edge of a face might not lie 
on the attached surface. Since the operations of today’s modeling tools are not closed on scope 
of the used data types, these errors cannot be prevented and if problems occur, the model has to 
be rectified. 

To formalize the given problem, first of all, definition of solids and their boundaries are 
given. This has to be done to actually know, what a correct object is and where rectification 
should lead to. The relation to the boundary is useful, because in the B-rep structure, the object 
itself, the 3-manifold with boundary, is represented by its boundary, the 2-manifold without 
boundary. Furthermore, sufficient conditions for validity are given for every node in the B-rep 
data structure. Please refer to the paper for the exact definitions. 

The following definitions are needed to represent the reconstruction algorithm: Lower case 
characters represent the models and face nodes of the models. Upper case characters represent 
the solids. Let m0 be a model with topological structure G(m0). Then there exists a nonempty set 

 
 M = { m | m is a valid model and has topological structure G(m0) } (11) 
 
For simplicity, models have only one shell. Rectification only makes sense, if geometric 

information and topological information are inconsistent, m0 ∉  M. One step of the rectification 
process is to reconstruct a solid mn. If mn ∈  M, mn is topologically equivalent to the model 
incorporating the design intent. If mn ∉  M, the topological equivalence between mn and m0 can 
be imposed by requiring that the genus of dMn is equal to the genus of dMi, where Mi ∈  M. This 
is denoted by g(mn) = g(m0). Let φ (dA, dB) be a function that calculates the geometric difference 
between dA and dB where A, B ∈  M, ε  a tolerance for the geometric change. Let Γ (dA, dB) be 
a function that calculates the topological structure change needed to achieve g(a) = g(b). 

The actual algorithm works as follows (The steps are renumbered in comparison to the paper 
to clarify the 3 approaches):  

1) Try to reconstruct the new model mn, with mn ∈  M and φ (dM0, dMn) ≤  ε  and 
φ (dM0, dMn) minimal. 

2) If no such model exists, try to reconstruct the new model mn, with g(mn) = g(m0) and 
φ (dM0, dMn) ≤  ε  and Γ  (dM0, dMn) minimal. 

3) If no such model exists, try to reconstruct the new model mn, with φ (dM0, dMn) ≤  ε  
and minimal topological change. 

4) Else, no Object is reconstructed. 
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 Figure 5: A solid (left) and its associated interval solid (right). 
 

A complexity analysis results in Step 2) is NP-Hard. 
For numerical robustness, the interval solid of a solid is defined. The basic idea is to 

represent the different shells of the object by many boxes covering the surface und filling the 
space in between to get a solid. Have a look at Figure 5. For more details, the reader is referred to 
the paper. This method is adapted to interval faces. These objects are used to evaluate if the 
underlying nodes in the B-rep structures are valid and, if not, the underlying nodes are modified, 
e.g. faces are grown a little bit. The size of the boxes approximately defines the resolution of the 
reconstruction and is related to ε .  

The presented method is able to rectify B-rep models with errors produced by previous 
operations. To correct the inconsistent data, the topological structure is tried to be kept. As a 
result, the user can use the rectified model as before, e.g. no random triangulation is applied. 
Finally, the whole problem cannot be solved by the presented method at all. It is not transparent 
for the user; some constants have to be specified and perhaps have to be altered to achieve the 
desired result. I suggest expanding research on closed operations. This prevents these errors and 
no validation and rectification methods are needed.  

4 Polygonal Modeling methods 

4.1 Polyhedral modeling 
The paper introduces a method for construction smooth surfaces from triangulated 

polyhedral mesh of arbitrary topology. The method is completely local and normal vectors can be 
interpolated. It can be used to beautify data acquired from three-dimensional reconstruction. 

The basic idea of the smoothing process can be best explained in two dimensions. There, 
several connected edges build a B-Spline of degree 1. To smooth this line, the degree can be 
increased resulting in some degrees of freedom available to satisfy Cx continuity. This idea is 
adapted to three-dimensional meshes. In the paper G1 continuity is used. 

This basic idea is extended with some considerations. G1 continuity normally stands for 
visual smoothness, but it does not guarantee a “nice shape”. Waves and self-intersections may 
occur; they must be avoided. 

The rest of the paper essentially consists of mathematical formulas which transfer these ideas 
to practice. 

The presented method can be used to smooth triangulated polyhedral meshes. It depends on 
the application if this is useful. E.g. if the mesh to be smoothed is created by a set of slices got 
from a medical investigation, this smoothing might not only beautify the result, it may also get 
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inconsistent with the original slices, because of the applied transformations on the single points 
of the surface. Furthermore, if there is more than one object in the scene, intersections between 
the different objects may occur, because only self-intersection is prevented. So this method 
should be used with caution. A better way to smooth objects would be to apply the smoothing 
during the creation of the mesh. E.g. if G1 continuity is demanded during the surface extraction 
from the slices, the correctness of the mesh can be preserved. 

4.2 Modeling Murex cabritii Sea Shell with a Structured Implicit Surface 
Modeler 

This paper does not describe a general method to construct a model, instead it is an example 
to implicit surface modeling. Constructive solid geometry (CSG), warping, 2D texture mapping 
and operations based on the BlobTree are used to construct a model of a sea shell. 

The underlying data structure to hold the model is the BlobTree. In the BlobTree, an implicit 
surface model is defined using a tree data structure, which combines implicit surface primitives as 
leaf nodes, with arbitrary operations such as blending, warping, and Boolean operations as 
interior nodes. Available operations for these nodes are: n-ary operations: ∪  (union), ∩  
(intersection), - (difference), + (blend), ◊n (super-elliptic blend), c (controlled blend), unary 
operations: w (warp), t (translate), s (scale), r (rotation), and m (2D texturemap). Due to the 
flexibility of the BlobTree, new operations can be added. See Figure 6 for an example of a 
BlobTree. 
 

  
 Figure 6: Example of a BlobTree 
 

Primitives are defined as functions. 
Super elliptic blending is defined as 
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The standard blending operator + is a special case of this formula with n = 1. Furthermore: 
 

 ),max()(lim
1

baba BB
nn

B
n

B
n

ffff =+
+∞→

 (13) 

 
So the super elliptic blending operator interpolates between the union and the standard blend 

operator. 
Controlled blending enables the option to control the blending between more than two 

BlobTrees. For example, a BlobTree can be blend with two others, but these two are not blended 
to each other. Controlled blending is defined as follows: 
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Implicit modeling is a powerful tool to define models, which offer the possibility to be 

described with mathematical formulas. Otherwise such models might be hard to model with 
normal NURBS modelers, like the sea shell described in the paper. However, implicit modeling 
also makes higher demands against the designer. The user has to understand the mathematics 
that describes the model. Furthermore, it is not possible to simply move some vertexes to change 
some details of the object like in other modeling techniques. 

4.3 Distance Computation between Non-convex Polyhedra at Short Range 
Based on Discrete Voronoi Regions 

This paper describes a method to compute the distance between triangulated meshes at 
interactive speed rates.  

The algorithm needs some precalculation I will describe at first. A three-dimensional voxel 
grid is constructed around the objects to be used. For every voxel in the grid, a list of triangles, 
the “Closest Feature List” (CFL), of the model, that have possibility to be the closest to the 
points in the voxel, is calculated. This is done as follows: For a voxel V and triangle A we can 
calculate the minimum and maximum distance between them (Figure 7). 
 

  
 Figure 7: Minimum distance between triangle and point in voxel 
 

For every point x in V it applies that 
 
 Vxxdxdxd AAAAA ∈∀≤≤ ),()()( maxmin  (15) 
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 Figure 8: Voxels associated with a triangle (left), triangles (black) involved in distance calculation (right) 

 
If, for two triangles A and B, )()( minmax

BBAA xdxd <  applies, we get together with the previous 
equation 

 
 VyVxydxd BA ∈∀∈∀< ,),()(  (16) 
 
Therefore, B cannot be closest triangle for any point in V and is left out of the CFL. So by 

calculating all the distances between V and the triangles and sorting them and checking this 
condition, the CFL is computed for V. This precalculation takes some time. E.g. to calculate the 
CFLs of a 303 voxelgrid with an object of 1324 triangles took 40 minutes. 

Let A and B be two objects which’s distances we want to calculate. Then we check, which 
triangles of B intersect with the voxels of A. This can be done efficiently by defining a BSP tree 
on the voxels on A and an OBBTree on the triangles of B. Afterwards this is done again for the 
voxels of B and the triangles of A. But you only have to check the voxels of B where the triangles 
of A returned by the first step are inside of, and respectively, the triangles of A, that are inside of 
a returned voxel of B. This is sufficient because the voxel-triangle pair we finally want holds the 
following condition: Feature X intersects voxel VY, the CFL of VY includes feature Y and feature 
Y intersects voxel VX, the CFL of VX includes feature Y. Then, the minimum values of distances 
of the voxels are calculated and are sorted according to them. Finally, the real distances are 
computed between the triangles in the CFL and the triangle interfering the voxel. This calculation 
can be early terminated, if the minimal distance of the next voxel in the sorted list is bigger than 
the real distance recently calculated. If the objects do not intersect the voxels of each other, the 
distance is approximated by the distances between the convex hulls of the models. An extension 
to this approach is given in short by introducing a method to cull voxels by approximated 
Voronoi Regions. 

The presented method enables to calculate the distances between complex triangulated 
models in real-time. A relatively long time for precalculation is needed. The method does not 
support non-triangulated models, e.g. models defined by NURBS. In comparision to another 
method implemented in the PQP library, the presented method is 3.4 times slower. Nevertheless, 
they say, this depends on their implementation and it could be as fast as the method used in the 
PQP library. They suggest using this for collision detection in dynamics simulation. However, in 
collision detection you do not need the actual distance between the objects, you are only 
interested if they collide or not. I propose using a more efficient algorithm to check for 
intersection than to compute the distance and check if it is zero. 



 14

4.4 Interior/Exterior Classification of Polygonal Models 
Visualization of complex objects with interior structure is a complicated problem. It is useful 

to determine interior and exterior parts of the model, to render them with different attributes. 
E.g. the interior could be rendered opaque and the exterior transparent (Figure 9). This 
determination is done manually in existing methods. This paper introduces a method to 
automatically solve this problem. 
 

  
 Figure 9: Cube with internal structure rendered in three different ways. 
 The picture on the bottom right shows the side of the cube. 
 

Let S be the surface of the model and L a line. Then the extremal points of S along L are 
defined as the points of T = S ∩  L with minimum and maximum value of t(p), where p ∈  T and 
t(p) returns the solution for t for p = u + t v, where u is the supporting vector and v the direction 
vector of L. An exterior point is defined if it is extremal for some line L. If it is not extremal for 
any Line L it is defined interior. In the algorithm, this definition is approximated by defining a 
point as exterior, if it is extremal for a fixed set of lines which’s directions are distributed over a 
hemisphere. Else, it is defined as interior. Thus, determination if a point is external or internal 
gets calculably. Practically this is calculated quite efficient by rendering the model with 
orthographic projection from all the specified directions into so-called “deep” buffers. This 
buffer works like a zbuffer except it also stores the layers behind the front layer. Thus, to 
determine if a point p is extremal at the line with a direction vi, you only have to look at the 
appropriate “deep” buffer and there at the pixel containing p. If it is the first or the last point in 
the pixel, the point is extremal, else it is not. Thus, the extremal determination is done parallel for 
many points. 

Based on it, extremal points are marked as visible and a polygon p is marked as visible if all 
its vertices are visible, else it is marked invisible. Then, when p is finally classified, it is marked as 
visible, if it is marked as visible by at least a before specified amount of directions. The visible 
polygons are specified as exterior, the invisible as interior. The intent to introduce a threshold 
value is to prevent polygons to be marked as visible that lie for example in tunnels and are visible 
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from a small number of directions but intuitively would be specified as being interior. However, 
this produces another problem with polygons that are visible from a small number of directions 
but intuitively would be specified as being exterior, like triangles on a complex surface. The value 
of this threshold depends on the model to be visualised. A method to solve this problem is 
described later on. Instead of only classifying interior and exterior polygons; it is also possible to 
directly assign different attributes depending on the amount of directions from which a polygon 
is visible. A completely invisible polygon can be marked as opaque and the more directions it is 
visible from, the more transparent it gets. 

The method has problems with large triangles. These can have different visibilities at 
different positions. Thus, to prevent strange rendering of such polygons after classification, they 
must be subdivided until the length of the largest edge in the model is below a user specified 
threshold. 
 

  
 Figure 10: Example of a model before and after the applying of dilation and erosion. 
 The holes get closed. 
 

The basic idea presented to solve the problem previously announced is to close tunnels and 
holes in the model and to use it to determinate visibility of the original polygons. Therefore, the 
original model is converted to a volumetric representation. Then, the holes and tunnels are closed 
by applying a dilation followed by erosion (Figure 10). To obtain a polygonal model, the 
Marching Cubes algorithm is used. The classification of a polygon relative to a direction is 
modified as follows: First, it is checked if it is near the exterior surface of the original “deep” 
buffer. If this is not true, the polygon is classified as interior. Else, the polygon is projected in a 
new “deep” buffer, already containing the modified model with the closed holes. If the polygon 
does not lie near the surface of the modified model, it is classified as interior, exterior otherwise. 

The presented method helps to visualize complex models without the need of manual editing 
of material attributes. Due to the use of “deep” buffers, modern hardware-rasterizers can be used 
to determine visibility. Nevertheless, the classification takes too long to do it on the fly before 
displaying the model. The examples took about 10 minutes. It depends on the desired application 
if this is worth to wait for it. The method can be adapted to use non-triangulated models like 
NURBS by triangulating them. This has to be done in any case if the model should be rendered 
in interactive environments to make use of the hardware-accelerations available. Though, this 
creates no additional expenditure. 
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 Figure 11: The model of a motor rendered with material attributes 
 modified by the presented algorithm. 
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