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Abstract

The branch and bound method is commonly used for finding boundaries for

global optimal solutions within a specified interval. However, this method

spends a lot of time in getting a high accuracy of the solution. The Interval

Newton method improves the speed of convergence, but it requires two time

continuous differentiable functions to be optimized. The problem of robust

matching does not fit into that group of functions. We discuss combining

the branch and bound method and the Interval Newton method for robust

geometric matching, to achieve a method that does not require the function

to be globally twice continuous differentiable while speeding up convergence

in the end to get high accuracy.
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Chapter 1

Introduction

Many problems in the field of computer vision have no closed form solutions

and require iterative numerical solutions. Numerical methods based on real

numbers return a solution, but usually do not guarantee global optimality

or numerical accuracy. Interval methods allow us to find globally optimal

solutions with known numerical bounds. A well-known method based on

interval arithmetic for finding the global maximum for a function is branch

and bound optimization. For geometric matching problems, this approach is

discussed in [3], [21], [20], [11] and [14] and reviewed in [4].

While such methods have be proven to be usefull in many practical ap-

plications, if the parameter space is high-dimensional or high accuracy is

needed, branch and bound performs slowly. This thesis describes how we

can use the interval Newton method to speed up the convergence. The in-

terval Newton method is the natural extension of the Newton method to

interval arithmetic. Van Hentenryck [23] shows that it is applicable for find-

ing solutions of high-dimensional polynomial systems. The interval Newton

method requires objective functions that are twice differentiable.

Our problem in applying interval Newton to problems in computer vision

is that the problems faced in computer vision are not differentiable. Thus

the Newton method alone does not allow us to simply find solutions for these

problems. With an appropriate interval arithmetic as described in Chapter

2, the Newton method is still applicable for non-differentiable functions, but
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the higher convergence speed gets lost. Since the evaluation of a Newton step

is much more expensive than an iteration of the branch and bound method,

the Newton method alone may perform even worse on such problems.

The work presented here combines these two methods by introducing a

function depending on the problem that decides whether the current interval

should be processed by a cheap branch and bound step or by a step of the

Interval Newton method. The latter may not always succeed in shrinking the

interval. In such a case, we fall back on a branch and bound step. The goal is

to make this function as correct as possible so it decides on Newton as often

as possible when a Newton step is useful and retains us from spending time

on calculating unsuccessful Newton steps. We call this dynamic switching.

To keep the method simple, we use the natural interval extension. The

method needs the function and its first and second derivative within areas

near the solution which can be analytically derived.

Matchlists introduced by Breuel [4] to speed up branch and bound meth-

ods especially for point matching can be adapted to work with the Interval

Newton method. As we will show later they also work with the Newton

method using dynamic switching.

This thesis is organized as follows: In the next section, previous work

on the geometric matching problem is discussed. In Chapter 2, the basic

concepts needed for the discussed methods are presented. Afterwards, the

methods that are used are explained. In Chapter 3 these methods are ap-

plied to the problems of finding lines, circles, axes aligned ellipses and rotated

ellipses in point datasets. Chapter 4 shows experimental results of the meth-

ods for these problems. In Chapter 5 the problems are modified to also use

normals of the points in the datasets. The effects of adding this additional

information is shown in Chapter 6, presenting experimental results. Chapter

7 concludes this thesis and describes possible future work.
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1.1 Previous Work

Previous approaches have used the Hough transform to find objects in datasets

of points. Let us begin with a short summary of the Hough transform. (See

[9], [7], [13] and [17] for a more detailed discussion). Every object to be found

can be represented by parameters in a parameter space P. There are several

possible objects running through each point m. By discretization and quan-

tization of P, for every point p in P that represents an object that includes

m, a counter for p is increased. The point in P with the highest counter is

returned as the object that is the best match.

There are some practical problems with the Hough transform:

- The memory requirements rise with the number of dimensions.

The grid size of the quantization of P has to be chosen appropriately.

A too coarse quantization can lead to false solutions, as several objects

get counted as one. A too fine quantization can lead to ignoring the

actual solution if small errors in the dataset result in counting for points

in P that are only nearby instead of inside the same grid element.

-- The Hough transform is vulnerable to noise. It is possible that there

are higher counts created in P from noise in the dataset than the counts

from the points actually describing the object that should be found.

From a statistical point of view, this can be optimized by adding a Gaus-

sian spot to the grid of P at p each time p describes an object where m is

part of. This is better rather than just increasing the counter of p by one.

But the problems mentioned above are still present. There are several ver-

sions of the Hough transform, like the probabilistic Hough transform [16],

the randomized Hough transform [25] and the hierarchical Hough transform

[22].

For the geometric matching problems of line circle and ellipse finding, the

hough transform gets applied as follows:

A line gets parameterized by an angle of its normal and an offset along

that normal. The parameter space is two-dimensional and each point m gets
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represented as a line in P. This well-known approach is discussed in [9] and

[7].

For the circle, the parameter space is three-dimensional. For example

a circle can be parameterized by its center and its radius. To avoid the

computational requirements of a three-dimensional Hough transform, Davies

[7] proposes to split the problem into two stages. First, find the center of the

circle by a two-dimensional Hough transform and then determine the radius

by a one-dimensional Hough transform.

The case of the ellipse is more complicated. Since five parameters are

needed to describe an ellipse, a direct approach would require a five-dimensional

Hough transform. Yuen et al. [10] proposed to split the problem again

into two stages: First, find the center of the ellipses by a two-dimensional

Hough transform and afterwards find the remaining parameters by a three-

dimensional Hough transform.

McLaughlin and Alder further developed in [19] their UpWrite method in-

troduced in [1] and [18] to find lines, circles and ellipses. As in our method dis-

cussed later, this approach is more robust against perturbation noise. They

split the problems into three stages. In stage one they compute local models

of small regions of the input data. In stage two, objects are build from these

local models. Stage three determines whether an object is a solution to the

matching problem or not, by calculating moments of the objects.

As another approach, Breuel [2] and [4] used the branch and bound ap-

proach in combination with a reduction of the number of features by matching

on datasets consisting of line segments instead of points.

If robustness against outliers is not needed, least square fitting methods

can be applied. For example Fitzgibbon, Pilu and Fisher [8] introduce a

method for least square fitting an ellipse using the algebraic distance as a

parameterization of the ellipse. By adding an additional constraint the result

is guaranteed to be an ellipse. However, all points of the dataset are assumed

to be part of the ellipse, thus the problem is simpler than the problem that

was accomplished by the previously mentioned methods.
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Chapter 2

Basic Concepts

2.1 Interval Arithmetic

Let us begin by defining the real intervals as

RI = {[a, b] : a, b ∈ R ∪ {−∞,∞}∧ a ≤ b}. (2.1)

Every function and operator gets defined on intervals, such that

∀x ∈ [a, b] ∈ RI : f(x) ∈ fI([a, b]) (2.2)

holds, where f : R → R is a function and fI : RI → RI is its corresponding

interval extension. According to Van Hentenryck [23], we call this the natural

interval extension of f . If for a function

f = f (1) ◦ f (2) ◦ . . . f (n) (2.3)

the interval extension of the f (i) is known, the interval extension of f can be

achieved by combining the interval extensions of the f (i):

fI = f
(1)
I ◦ f

(2)
I ◦ . . . f

(n)
I (2.4)

Interval extensions are not unique. From all the possible interval extensions,

we want to have one which has tight bounds. For example we do not want
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to chose f [a, b] = [−∞,∞] for every function f . The bounds given by an

interval extension do not have to be optimal. A property we require from

the interval extensions of the functions we use later on is

∀ a < b < c : lim
[a,c]→[b,b]

fI([a, c]) = fI([b, b]) = [f(b), f(b)]. (2.5)

It is at least guaranteed that the resulting interval value of the function

converges towards a single value if the parameter interval converges to a

single value.

Addition, subtraction, multiplication and division by intervals not con-

taining zero can be extended in a straight forward way as in Chen [6]:

[a, b] + [c, d] = [a + c, b + d]

[a, b] − [c, d] = [a − d, b − c]

[a, b] · [c, d] = [min {ac, ad, bc, bd}, max {ac, ad, bc, bd}]
[a, b] / [c, d] = [a, b] · [1/c, 1/d] if 0 /∈ [c, d]

(2.6)

Special care has to be taken of the division by intervals containing zero.

Division of [a, b] by an interval [c, d] where c ≤ 0 ≤ d is defined as described

by Chen [6] and van Hentenryck [23]:

[a, b] / [c, d] =



















































[b/c,∞] if b ≤ 0 and d = 0

[−∞, b/d] ∪ [b/c,∞] if b ≤ 0 and c < 0 < d

[−∞, b/d] if b ≤ 0 and c = 0

[−∞,∞] if a < 0 < b

[−∞, a/c] if a ≥ 0 and d = 0

[−∞, a/c] ∪ [b/c,∞] if a ≥ 0 and c < 0 < d

[a/d,∞] if a ≥ 0 and c = 0

(2.7)

We do not want to represent the intervals by union of intervals, because

using only one interval is faster and running costs can be guaranteed while

the representation of the bound is not as accurate after divisions by inter-

vals containing zero. Therefore, the interval extension of the division that
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contains zero in the denominator which will be used later is

[a, b] / [c, d] =































[b/c,∞] if b ≤ 0 and d = 0

[−∞, b/d] if b ≤ 0 and c = 0

[−∞, a/c] if a ≥ 0 and d = 0

[a/d,∞] if a ≥ 0 and c = 0

[−∞,∞] otherwise

(2.8)

The cases where the division returned splitted intervals are combined here

to return the union of the two splitted intervals. The idea behind this is in

practice to try to avoid divisions by zero so that the first interval extension

of the division (2.7) would not return two intervals and the second (2.8)

would not return narrow bounds. If division by intervals containing zero are

guaranteed to occur rarely, the disadvantage of having non-optimal bounds

is negligible.

The functions we evaluate with interval arithmetic are defined on real

values in the first place. Therefore the support can be restricted in such a

way, that divisions by zero do not occur. Then, assuming we have optimal

bounds, switching to interval extension cannot result in divisions by zero.

However, since we do not have optimal bounds, but only tight bounds, this

case may occur from time to time. We need to handle it accurately to ensure

correctness of the described methods. Thus, the case where divisions by zero

occur can be regarded as rare.

Real numbers cannot be represented in hardware. Every interval calcu-

lation described here can be mapped on a hardware representation by grow-

ing the borders to the nearest possible values: [a, b] has to be implemented

as [prevfp(a), nextfp(b)], where prevfp(x) returns the largest value l repre-

sentable by the hardware used for the calculation with l ≤ x and nextfp(x)

returns the smallest value h representable by the hardware with x ≤ h.

10



The interval extension can also be applied to vectors and matrices:

x ∈ RI
n : x =













x0

x1

...

xn−1













(2.9)

x ∈ RI
n×m : x =













x0,0 x0,1 · · · x0,m−1

x1,0 x1,1 · · · x1,m−1

...
...

. . .
...

xn−1,0 xn−1,1 · · · xn−1,m−1













(2.10)

Analogously, this can be transferred to functions of vectors and matrices.

Let X and Y be R, R
n or R

n×m and XI and YI be RI, RI
n or RI

n×m.

∀x ∈ X ∈ XI : f(x) ∈ fI(X) (2.11)

where f : X → Y is a function and fI : XI → YI its corresponding interval

extension. We will denote fI by f depending on the signature. Additional

definitions used later on are: Let x ∈ R
n, y ∈ R

n, then define

[x, y] :=













[x0, y0]

[x1, y1]
...

[xn−1, yn−1]













(2.12)

and let x ∈ R
n×m, y ∈ R

n×m, then define

[x, y] :=













[x0,0, y0,0] [x0,1, y0,1] · · · [x0,m−1, y0,m−1]

[x1,0, y1,0] [x1,1, y1,1] · · · [x1,m−1, y1,m−1]
...

...
. . .

...

[xn−1,0, yn−1,0] [xn−1,1, yn−1,1] · · · [xn−1,m−1, yn−1,m−1]













(2.13)

and

[x, y].lo = x, [x, y].hi = y. (2.14)
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2.2 The Branch and Bound Method

In this chapter, we will give an overview over the branch and bound method

for optimization problems on continuous domains.

Consider the following problem: Given a bounded rectangular domain

X ⊂ R
n in a parameter space. Let the objective function be f(x) : X → R.

Find the position y of a global maximum of f in the domain X: y ∈ X such

that f(y) = maxx∈X f(x).

Assume there is a function fu such that

∀y ∈ Y : fu(Y ) ≥ f(y) (2.15)

holds, where Y ⊂ X and

lim
Y →[y,y]

fu(Y ) = [f(y), f(y)] (2.16)

Then, the branch and bound method works as described by the following

pseudo code: Let x be the domain in parameter space.

PriorityQueue p
p.Insert (x, fu(x))
while ( not Terminate(x) )
{

x = p.RemoveHead ()
x0 = Split (x, 0)
x1 = Split (x, 1)
p.Insert (x0, fu(x0))
p.Insert (x1, fu(x1))

}
return x

The meanings of the functions used in the pseudo code are:

- p.Insert(x, v) inserts x into the priority queue p with a priority of v.

- p.RemoveHead() returns the head of the priority queue p and removes

it from the priority queue.
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- Split (x, i) splits the interval box x along the longest edge e. The

returned half depends on the i. If i = 0, the interval with the smaller

lower bound in the direction of e is returned. If i = 1, the other interval

is returned.

- Terminate(x) describes the termination condition. It is true if the edges

of the interval box are smaller than specified accuracies.

A suitable function fu has to be derived for each problem separately. For

example Breuel [4] calculated functions for geometric matching problems.

A more general way is to use the natural interval extension of the function

f for optimization as described by Breuel in [5]. Setting fu(x) = f(x).hi,

(2.15) is satisfied because of (2.11). Using natural interval extension, (2.16)

is also satisfied due to (2.5). Therefore, f(x).hi fulfills the required properties

for use in the branch and bound method. But we achieve even more by doing

this. The natural interval extension does not only give us an upper bound

for the function f on the current interval, but also a lower bound. This can

be used to prove optimality as follows: Let the current interval be denoted

as x, then it holds

if ∀y ∈ p.Set() : f(x).lo > f(y).hi, then x contains the global maximum,

(2.17)

where p.Set() returns the set of intervals in the priority queue p. Note that

such additional knowledge can also be achieved by not using interval arith-

metic but by manually deriving a lower bound depending on the problem like

previously for the upper bound. This condition can be efficiently checked by

the use of the priority queue. Thus, (2.17) can be rewritten as

if f(x).lo > p.Head(), then x contains the global maximum, (2.18)

where p.Head() returns the head of the priority queue p without removing

it. The user may want to change the termination condition of the branch

and bound method described earlier by verifying if this condition is true to

guarantee that the solution is the global maximum. However, depending

on the problem including the given problem data, getting this proof may
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take some time. Furthermore, if the problem has multiple global maxima,

then this condition cannot be proved and therefore the algorithm will not

terminate anymore.

In practice, the termination condition checks the widths of the interval.

If they are below predefined thresholds, the termination condition is true and

otherwise false. After termination of the algorithm, the optimality condition

(2.17) can be checked by evaluating (2.18) to perhaps achieve the additional

information that the returned interval is the global maximum.

Let xmax be a global maximum. If the optimality condition is not satisfied,

then we know at least that for our solution x

(f(xmax) − f(x)).hi ≤ f(x).hi − f(x).lo (2.19)

holds, because our solution is taken from the head of the priority queue and

therefore f(xmax) ≤ f(x).hi and f(xmax) ≥ f(x).lo. Thus, the error we get

in quality is less or equal to the size of the quality of the solution x.

2.3 Notation for Differentiation

The methods that will be described need the first and second derivative of

the quality function. Let us define the notation that will be used:

For a function h : R → R the derivative is written as usual as h′.

The gradient of a function f : R
n → R is defined as a column vector:

∇f(x) =













δf

δx0
δf

δx1
...

δf

δxn−1













(x) (2.20)

D defines the derivative of the function following it. This means the partial
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derivatives are written as a row vector:

Df(x) =
(

δf

δx0

δf

δx1
· · · δf

δxn−1

)

(x) (2.21)

D can also be applied to a function g : R
n → R

m resulting in a matrix:

g(x) =













g0

g1

...

gm−1













(x) (2.22)

Dg(x) =













δg0

δx0

δg0

δx1
· · · δg0

δxn−1

δg1

δx0

δg1

δx1
· · · δg1

δxn−1

...
...

. . .
...

δgm−1

δx0

δgm−1

δx1
· · · δgm−1

δxn−1













(x) (2.23)

The operator D only applies to the function directly following it. For example

the following is true:

Df(g(x)) = (Df)(g(x)) (2.24)

According to the chain rule, this leads to

D(f(g(x))) = Df(g(x)) · Dg(x)

=
(

δf

δx0

δf

δx1
· · · δf

δxn−1

)

(g(x))

·













δg0

δx0

δg0

δx1
· · · δg0

δxn−1

δg1

δx0

δg1

δx1
· · · δg1

δxn−1

...
...

. . .
...

δgm−1

δx0

δgm−1

δx1
· · · δgm−1

δxn−1













(x), (2.25)

which fits perfectly because f ◦ g : R
n → R and D(f ◦ g) : R

n → R
n.
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Therefore D∇f(x) is the Hessian matrix:

D∇f(x) = D













δf

δx0

δf

δx1
...

δf

δxn−1













(x)

=













δ2f

δx0δx0

δ2f

δx1δx0
· · · δ2f

δxn−1δx0

δ2f

δx0δx1

δ2f

δx1δx1
· · · δ2f

δxn−1δx1

...
...

. . .
...

δ2f

δx0δxn−1

δ2f

δx1δxn−1
· · · δ2f

δxn−1δxn−1













(x) (2.26)

D∇g(x) is still undefined because of the geometric arrangement of the com-

ponents as vectors and matrices. This limitation can be broken by using

the tensors. This will be used in the later chapter of multiple constraint

matching. Let the spaces be defined as

Rn = span{ei : 0 ≤ i < n}
Rm = span{fj : 0 ≤ j < m} (2.27)

where ei and fi are bases of the corresponding vector spaces Rn and Rm.

Then, g : Rn → Rm can be represented in tensor notation as

g(x) =

m−1
∑

j=0

gi(x) fj (2.28)

We define the first derivative of g, Dg and the second derivative D2g in tensor

notation as

Dg(x) =
m−1
∑

j=0

n−1
∑

i=0

Dgj,i(x) fj ⊗ ei

D2g(x) =

m−1
∑

j=0

n−1
∑

i=0

n−1
∑

ĩ=0

D2gj,i,̃i(x) fj ⊗ ei ⊗ eĩ (2.29)
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where

Dgj,i =
δgj

δxi

D2gj,i,̃i =
δ2gj

δxĩδxi

. (2.30)

2.4 The Interval Newton Method

The Interval Newton method described by Hansen and Greenberg [12] is the

extension of the Newton method on real values to the interval arithmetic. It

can be used to find zeros of a continuously differentiable function h, given

additionally the derivative of h. Since we are interested in global maxima, the

optimization problem defined in the previous chapter can basically be solved

by finding zeros of the derivate of f . Therefore we ask for twice continuous

differentiability of f . Let us reformulate the optimization problem:

Given a bounded rectangular domain X ⊂ R
n in a parameter space.

Let f(x) : X → R. Find the position y of a global maximum of a twice

continuous differentiable function f in the domain X: for example y ∈ X

such that f(y) = maxx∈Xf(x).

A step of the Interval Newton method works as follows: Let x be the

current interval, p ∈ x the pivot point, arbitrarily chosen from the current

interval and g = ∇f . Then a Newton step is to perform

xnext =
(

x − (Dg(x))−1g(p)
)

∩ x. (2.31)

In practice, this is calculated by solving

Dg(x)xsol = x − g(p) (2.32)

and applying

xnext = xsol ∩ x. (2.33)

Figure 2.1 illustrates the method. Within the current interval x, a pivot

point p is chosen. Using the bound for the derivative of g in the interval, a
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Figure 2.1: Illustration of a Newton step

new bound xnext for the solution is calculated. h is the straight line through

the point (p, g(p)) with the slope equal to the upper bound of the derivative

of g over the interval x. l is the straight line through the point (p, g(p)) with

the slope equal to the lower bound of the derivative g over the interval x.

Thus, g has to be between h and l on the interval x. Because we search for

a zero of g, we take the position where h and g are zero as the bounds for

the next interval, cut with the current interval x since we already know that

the solution has to be inside x.

Plugging this into our algorithm leads to a combination of the branch

and bound and Interval Newton method as it can be seen in figure 2.2. Let

x be the domain in parameter space. x.contains(y) checks if x contains y

and x.isempty() checks if x is the empty interval. The other notations are

equivalent to the previous notations used in the pseudo code of the branch

and bound method.

As we can see, the algorithm falls back to the branch and bound method

if the interval cannot be shrunk. An important point of the behavior of

this method is that if the interval is reduced by an iteration step, only this

interval is considered from then on. The area x\xnext is proved to have no

local maximum and therefore no global maximum either. Consequently if

xnext is empty, it is proved that the global maximum is not inside x.
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PriorityQueue p
p.Insert (x, f(x).hi)
while ( not Terminate(x) )
{

x = p.RemoveHead ()
xnext = (Dg(x))−1(x − g(p))
if not xnext.contains(x)
{

xnext = xnext ∪ x
if not xnext.isempty()
{

p.Insert (xnext, f(xnext).hi)
}

}
else
{

x0 = Split (x, 0)
x1 = Split (x, 1)
p.Insert (x0, f(x0).hi)

}
}
return x

Figure 2.2: Pseudo code of the interval Newton method.

Note that the solutions of this combined method may be different from the

solutions of the branch and bound method. This depends on two different

definitions of the problem that has to be solved. The branch and bound

method searches for the position x of a global maximum which satisfies

∀y ∈ X, f(y) ≤ f(x). (2.34)

The combined method searches for the position x of a largest local maximum

in the interior which satisfies

∀y ∈ X, f(y) ≤ f(x) ∧∇f(x) = 0. (2.35)

This is caused by the Newton method searching for zeros of ∇f . If the

function only has local minima in the prescribed domain, it will not return a

maximum. This has to be kept in mind if this method is used. Let us assume
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that the f has at least one local maximum. Then, the problem that Newton

may converge to a local minimum instead of a maximum is addressed by

the priority queue. If an interval contains a local minimum, it will stop to

be considered at some stage since the upper bound gets low. The difference

of the search criterion causes problems if the global maximum x lies on the

boundary of the domain and it does not hold ∇f(x) = 0. In such a case,

branch and bound will return that maximum while Newton will prove that

there is no local maximum in the sense of Newton in the environment of the

global maximum and therefore will return some other position. In practice,

this will not be a problem if the domain chosen is large enough.

This combined method can be viewed from two different points of view. It

can be seen as a branch and bound method using Newton steps to subdividing

the current interval better. Or it can be seen as the Interval Newton method

described by Hansen and Greenberg [12] with an additional criterion for

choosing the next interval to process.

For solving the resulting linear system (2.32), Hansen and Greenberg [12]

proposed to try an LU-decomposition and forward and back substitution. If

this fails, they fall back on the Interval Gauss Seidel method discussed in the

next chapter. For solving our problems, the LU-decomposition nearly always

failed. Therefore the Gauss Seidel method is used directly for the method

used during this thesis.

As described by Chen [6] and Hansen and Greenberg [12], not all com-

ponents of the matrix Dg(x) of the system to be solved (2.32) have to be

evaluated over the whole current interval. Instead, parts of the matrix can

be evaluated over intervals having some components restricted to the compo-

nents of the position of the pivot point p, resulting in a matrix Dg(x, p). The

advantage is that one gets get better bounds in a single Newton step. The

tradeoff is that, if the matrix is expensive to evaluate, it cannot be reused

in consecutive iterations because the pivot point most likely lies outside the

next interval. Then a new pivot point p̃ has to be chosen and Dg(x, p̃) has

to be evaluated with respect to it. Furthermore, Dg(x, p̃) is not symmetric

anymore and the cost of evaluation of one matrix multiplies by two. The

methods discussed here evaluate over the whole interval because the calcu-
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lation of the second derivatives of the discussed problems turn out to be

expensive.

The combined branch and bound and Interval Newton method is referred

to as the Interval Newton method in the rest of this thesis. This is suitable

since we only discuss finding of global maxima from now on.

2.5 Interval Gauss Seidel Method

As mentioned earlier, we want to avoid division by intervals containing zero.

Thus, we want to have a method for solving linear systems which does not

divide by zero during the calculations.

The Interval Gauss Seidel method is the extension of the Gauss Seidel

method defined on real values to interval arithmetic. First of all, let us define

the problem of solving a linear system in interval arithmetic: Let A ∈ RI
n×n,

b ∈ RI
n be given. By asking for a solution x for

Ax = b (2.36)

we mean, find an x ∈ RI
n such that

∀a ∈ A : b ⊂ ax (2.37)

Theoretically, this is a more general definition than we actually need for

solving the resulting system from the Newton method. There, we only have

a real value g(p) on the right side of the equation. However, the exact

g(p) might not be representable in the limited precision of a computer and

therefore all we can ask for is that it returns an interval including the correct

value.

A simple solution can be found by just taking a very large interval. But

the amount of information we get from such a choice is low. Thus, the x

should be a as small as possible.

Such an x can be found by LU-decomposition and forward and back
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substitution as mentioned earlier. The systems we have to solve later on

are low-dimensional and using iterative methods to solve low-dimensional

systems is slower. The problem with that approach is that many divisions by

different intervals take place. If our interval arithmetic is used that always

returns only one interval also if a division by an interval containing zero

occurs, it is very likely that the result is a very large interval. In the worst

case, bounds of ±∞ may occur. In the case of using an interval arithmetic

that may result in two intervals if a division by an interval containing zero

takes place, the resulting bound for x is a lot better. But the number of

subintervals may increase. This becomes a problem especially if the result is

processed further. The complexity of the algorithm may become larger than

needed.

Experiments have shown, that for our problems in most cases, the result-

ing bound was much worse than the result from the Gauss Seidel method.

Furthermore, in many cases, the returned bound had ±∞ components, if the

calculations led to a division by an interval containing zero.

The Interval Gauss Seidel method solves these problems. Let us begin

with a definition of how the Gauss Seidel method works: First of all, a

starting interval x0 for which (2.37) holds is needed. Then an Interval Gauss

Seidel step is defined as follows:

for i = 0 to n − 1 do

xk+1,i =

(

bi −
∑i−1

j=0 Ai,jxk+1,j −
∑n−1

j=i+1 Ai,jxk,j

)

Ai,i

∩ xk,i

(2.38)

This step is iterated until the difference in size of two concurrent results is

less or equal to a predefined epsilon:

| ||xk+1|| − ||xk|| | ≤ ε (2.39)

where || · || denotes the Euclidean norm.

The advantage of this method is that only divisions by the intervals on

the main diagonal occurs. If it is known that the diagonal only contains
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intervals not containing zero, the case of division by an interval containing

zero does not happen. In practice, it is hard to show for specific problems

that the diagonal fulfills this requirement. If the problem is appropriate, as

our problems will be, it is simple to show that the equation that calculates the

matrix A on real numbers cannot result in zeros on the main diagonal. But

this alone still does not guarantee that evaluating the equation with interval

arithmetic also has this property; the resulting bound may be unnecessarily

larger. In practice, this has not turned out to be a problem for our purpose.

In the Newton method, if the Gauss Seidel method does not converge because

of this reason, we fall back on a branch and bound splitting step. In the next

iteration, the bound for A is smaller and the parts overlapping zero probably

vanish. Therefore, using the simplified division is suitable for our problems.

Instead of iterating until (2.39) is true, we can also choose to terminate

if the number of iterations reaches a predefined value λ. If the result is

not accurate enough, the iteration is continued in a later step in the Newton

method with a recalculated second derivative. If λ = 1, the second derivative

is evaluated every step, what becomes equal to every iteration. If the evalu-

ation of the second derivative is expensive, it may be better to increase λ to

a higher value and reuse the calculated matrix with the tradeoff of needing

more steps because of the less accurate bounds. A good choice of λ depends

on the problem. The value used later on in out implementation is between 1

and 10.

Kearfott et al. [15] reviewed the use of preconditioners for the Interval

Gauss Seidel method. Before starting to iterate, A and B get multiplied

by another matrix P to speed up convergence. As noted in [12], a common

choice is to take the midpoint inverse of A, meaning the matrix consisting of

the midpoints of the components of A and inverted afterwards. Kearfott et

al. discussed other choices of P , especially for splitting of the interval during

the Gauss Seidel method caused by divisions.

Since we limit λ to a rather low limit, the cost of solving an additional

linear system on real values did not turn out to be an advantage in out

experiments. As mentioned earlier, we also care about avoiding divisions by

zero by preparing our second derivative not to produce intervals containing
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zero on the main diagonal. This property may get lost if A gets multiplied

by some other matrix. It turned out to be more efficient in our case, not to

use preconditioners.

2.6 Dynamic Switching

An Interval Newton step is expensive compared to a branch and bound step.

If we have to find the maximum of a quality function Q mapping from X to

R where X is n-dimensional, we only have to evaluate Q for one creation of

a new interval in the branch and bound method which leads to a complexity

of O(1) for the number of function evaluations and a complexity of O(n) for

splitting the interval. For Newton, we have to additionally evaluate the first

and second derivative and solve an n-dimensional system. Using iterative

methods like the Gauss Seidel method from the previous chapter to solve

the system, a Newton step results in a complexity of Ω(n2) which is undesir-

ably high. Furthermore, the constants are high, too, because computing the

derivatives involves many complicated expressions. This also holds for our

problems, even though they are low-dimensional. The highest dimension we

have is five for the rotated ellipse.

For smooth functions like polynomials, Newton always is the better choice

as shown by Van Hentenryck [23]. A problem arises if our functions are not

continuously differentiable everywhere. Newton still works in that case if

the interval arithmetic is extended to have ±∞ values as boundaries of the

intervals like we have. But the algorithm slows down drastically since the

time spent on expensive Newton steps turns out not to help in narrowing

down the solution interval.

This issue can be dealt with if the problem has the following property:

consider a problem that is twice continuous differentiable near the local max-

ima. Then, at some point the current interval will be small enough for taking

advantage of using a Newton step. If it is known when the interval is small

enough and when it is not, we can efficiently decide when a Newton step

should be made.
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Let Q be the quality function to be maximized. We handle this problem

by evaluating an additional function which gives us a hint proposing to try

a Newton step or not. This function is called dynamic switching function.

S : RI
n×n → {true, false} (2.40)

We require: if S returns true, our function Q is at least twice continuous

differentiable in the tested interval for our problem.

One could ask: why not use a non-interval method after dynamic switch-

ing tells us to use Newton? One may think that there is only one local

maximum inside the interval if the dynamic switching function is true, which

is nice enough to be found by a non-interval method. There are two reasons

for continuing to use the Newton method after the dynamic switching func-

tion becomes true. The first one is, that the proof for the error boundary

of the solution stops exactly when switching to a non-interval method. The

only thing we know afterwards is the error boundary we got from the last

branch and bound step we made. The second reason is that we also lose

the information about whether the solution is optimal. This can happen

for example, if the interval contains several local maxima. The non-interval

method may run into the wrong maximum. Another possibility is that we

do not get a proof that the current interval includes the optimal solution.

If that is the case, we will never know which interval contains the optimal

solution if we continue with a non-interval method.

The first possibility actually occurs very often in the problems discussed

later on. Q is defined as a sum over several functions depending on the

different points where a primitive has to be matched. Therefore Q can be

thought of as a sum of humps for each point, all slightly shifted. Q is very

hilly, especially if we have a lot of points contributing to the value of Q

of the current interval, which in general is the case for the optimal and

near optimal solutions. Therefore, in general, Newton steps using interval

arithmetic should be preferred to continue the calculation.
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2.6.1 Definition of Optimality for Dynamic Switching

As we will see in the following chapters, using dynamic switching seems to

speed things up. But the question arises, how good dynamic switching is.

To be more precise, let us specify what we mean by optimal in this context:

A Newton step is called successful, if it shrinks the interval. Otherwise, it

is called unsuccessful. Dynamic switching requires the definition of a dynamic

switching function which depends on the current interval. It returns true if a

Newton step should be used and false if it should not. A dynamic switching

function is optimal, if it returns true if and only if a Newton step will be

useful.

Note that this does not mean that a Newton step always shrinks the

interval more than a branch and bound step does. It is only assumed that

this is the case because of the theoretically higher convergence rate.

Obviously, this optimality can be achieved by a function trying a Newton

step and returning if it was successful or not. Since we don’t gain speed from

this, we should also add some condition on the complexity of the function.

A Newton step has a complexity of Ω(n2). We demand that the dynamic

switching function has a complexity lower than O(n2), where n is the number

of dimensions of the problem. Note that the complexity of a Newton step,

a branch and bound step and the dynamic switching function rises linearly

with the number of points. But since it is the case for all of them, this factor

is left out.

In practice, it is not so easy to guarantee that a Newton step will be

successful. A Newton step might also be unsuccessful if the function is twice

continuous differentiable when the calculated bound for the derivatives is

bad. But it is simple in many problems to know if a function over a specific

interval is twice continuous differentiable. If that is the case, a Newton step

will probably be successful. It will turn out that requiring this is good enough

in practice. This property has to be and will be shown for the dynamic

switching function used later on.
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Chapter 3

Applications

3.1 The Problem

Let a dataset M be a set of points in R
2. The problem of robust geometric

primitive matching in a dataset can be formalized as finding

argx max
x∈X

Q(x) (3.1)

Q(x) =
∑

m∈M

qm(x) (3.2)

qm(x) = Φ(dm(x)) (3.3)

where x is a vector in the parameter space X as proposed by Breuel [5].

Q is called the quality function since it represents the quality of x with

respect to the optimization problem. q defines the quality of one point in

M with respect to x. dm(x) is the distance between the point m and the

primitive with the parameters x. This has to be calculated separately for

every primitive.

Φ(x) is a function with its maximum at zero and |Φ(x)| is monotonically

decreasing so that the quality function gets a higher value if the points have
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smaller distances to the primitive. For example we use

Φ(x) = max

(

0, 1 − x2

ε2

)

(3.4)

See figure 3.1 for a plot of this function.

0

1

3- 3

Figure 3.1: Φ

ε describes the border between counted, as a part of the primitive, and

counted as an outlier, not contributing to the quality function. That way,

the solution is robust against outliers, not disturbing the solution, in contrast

to the least square method

Φ(x) = −x2. (3.5)

3.2 Statistical Justification of Φ

Defining Φ as (3.4) can also be justified by a statistical model. According

to Wells III [24], if we assume a Gaussian error model for the dataset, the

probability of having a value x in the dataset while the correct value is X is

Pd(x) = ae−
(x−X)2

b (3.6)

with constants a = 1√
2πσ2

and b = σ2

2
where σ2 is the variance.

Assuming an equal distribution of the noise in the dataset, the probability

density of having a feature somewhere is a constant

Pb(x) = Pb,0 (3.7)
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Switching to log-likelihood functions, we get

log Pd(x) = m +
(x − X)2

b
(3.8)

log Pb(x) = log Pb,0 (3.9)

where m = log a.

x

y

log Pb(x)

log Pd(x)

x is part of the object

X

x belongs to the
background noise

x belongs to the
background noise

Figure 3.2: Creation of a classifier for distinguishing between the object and
the background noise.

Building a classifier from these two distributions, we assign a value x to

be a part of the object to be found if log Pd(x) ≥ log Pb(x) and we assign it

to the background noise if log Pb(x) > log Pd(x). See Figure 3.2 for a visual

explanation. The classifier does not change, if we scale and shift it along the

y-axis. If we assume X = 0, we get a log-likelihood function telling us if

a point in the dataset is a point of the solution or if it is produced by the

background noise:

Φ(x) = max

(

0, 1 − (x − X)2

b

)

(3.10)

That is exactly the Φ defined earlier in (3.4).
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3.3 Derivatives for the Newton Method

For the Newton method, the first and second derivative of the quality function

is needed. As a part of that, the first and second derivative of Φ is also needed.

These can be calculated as

Φ(x) = max

(

0, 1 − x2

ε2

)

(3.11)

Φ′(x) =

{

0, if |x| > ε

−2x
ε2

, otherwise
(3.12)

Φ′′(x) =











0, if |x| > ε

∞, if |x| = ε

− 2
ε2

, otherwise

(3.13)

0

1

3- 3

0
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3- 3

03- 3

8

Figure 3.3: Φ and its first and second derivative

These functions are plotted in figure 3.3. Since we need the first and the

second derivative and our quality function Q maps only to a one-dimensional

space, we transpose the first derivative and get the gradient of Q and denote

30



from now on the second derivative of Q as the derivative of the gradient of

Q:

Q(x) =
∑

m∈M

qm(x) (3.14)

F = ∇Q(x) = (DQ(x))T =
∑

m∈M

∇qm(x) (3.15)

DF = D(∇Q)(x) =
∑

m∈M

D(∇qm)(x) (3.16)

As denoted earlier, the problems discussed later on are all designed to find

robust solutions. Their qm are of the form

qm(x) = Φ(dm(x)) (3.17)

The first and second derivatives are in general

f(x) = ∇qm(x) = Φ′(dm(x))∇dm(x)

Df(x) = Φ′′(dm(x))(∇dm(x))2 + Φ′(dm(x))D∇dm(x) (3.18)

where

(∇dm(x))2 = (∇dm(x))(∇dm(x))T (3.19)

is the outer product instead of the scalar product and therefore an n × n-

matrix.

These are the parts of the derivatives that all problems discussed here

have in common. In the following chapters, the concrete derivatives for the

problems are shown.

3.4 Matchlists

The quality function Q can be directly plugged into the branch and bound

method. However there is an efficient way to optimize the evaluation of Q

in each step by making use of the coherence between two concurrent steps

of related intervals. The idea is to remember if a point contributes a value
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larger than zero to the sum of the quality function. When an interval x that

was created from a previous interval y by splitting is processed, the points

that did not contribute to Q(y) will also not contribute to Q(x) because

x ⊂ y. Therefore, the calculations for these points can be dropped and the

evaluation speed increases.

The lists of points contributing to the sum are called matchlists as intro-

duced by Breuel [4]. He also used them for speeding up the solving of the

correspondence problem in finding matches between two sets of points under

linear transformations. For that application, the gain in speed is even higher

because considering to have n points, finding the best match of each point

with each other results in a complexity of Ω(n2) if tried naively or Ω(n log n)

if a spatial data structure like a R-tree is used. Remembering which points

cannot be the optimal match reduces n drastically in the later phase of the

calculation.

Matchlists can be easily adapted for use in the Newton method. If in

one step a point contributes zero to Q over the whole current interval, then

it will also contribute zero to Q evaluated over all subintervals created from

the current interval.

For the branch and bound method, the amount of memory needed has to

be considered. Branch and bound tends to create a lot of small intervals near

the solution at the end. Depending on the desired accuracy, the number of

intervals can grow rather large. Breuel [4] describes several ideas to deal with

that problem. It is important to think about the storage of the matchlists.

One option is to store a list of indices to the points. In the beginning it is

better to only store the points that do not contribute to the interval. Later

on, the opposite is the case. Another option is to use a bit mask representing

the points. Run length encoding the matchlists also helps. Another option

is to use depth first instead of breadth first which first continues with the

best interval created from one step without looking for intervals with higher

quality in the priority queue. That way, the algorithm only processes the

best subinterval of the current interval, ignoring all other intervals left in the

priority queue, until the desired accuracy is reached. If it is successful, fewer

intervals and therefore matchlists are created and less memory is needed.
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The tradeoff is that the algorithm may take longer if the assumption that

the direct choices are the best turns out to be false. However, Breuel showed

that for the problem of geometric matching the loss in speed is negligible

with respect to the lower requirements of memory.

Matchlists used in the Newton method turn out to practically not have

this memory problem. Considering the higher convergence rate and the abil-

ity to prove nonexistence of a maximum in an interval, it is understandable

to get fewer intervals and matchlists created.

3.5 The Dynamic Switching Function

As denoted before, for our problems qm(x) is of the form:

qm(x) = Φ(dm(x)) (3.20)

where dm : R
n → R describes a distance that should be small. Let us assume

that dm is twice continuous differentiable on x.

Let us define S as

S : RI
n → {true, false} : S(x) = (∀m ∈ M : ±ε /∈ dm(x)) (3.21)

Then, by definition, S is true if and only if the contributing part qm(x) of

every point m to Q is [0,0] or does not contain zero. This is exactly the case

when dm(x) lies clearly inside or outside the hump of Φ, not overlaying the

non-differentiable points.

Theorem. If dm is twice continuous differentiable and S(x) = true, then Q

is twice continuous differentiable on x.

Proof. From the precondition we know that

S(x) = true ⇒ ∀m ∈ M : ±ε /∈ dm(x). (3.22)

If dm(x) lies outside the hump of Φ, the corresponding point m does not
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contribute to the sum of Φ. It holds that

Q(x) =
∑

m∈M

Φ(dm(x)) =
∑

x∈{x:x∈M∧|dm(x)|.lo < ε}
Φ(dm(x)). (3.23)

Together with (3.22) this leads to

S(x) ⇒ Q(x) =
∑

x∈M̃

Φ(dm(x)) (3.24)

where

M̃ = {m : m ∈ M ∧ |dm(x)|.hi < ε}. (3.25)

The first and second derivatives of Q are

F (x) =
∑

M̃

DΦ(dm(x)) · Ddm(x) (3.26)

DF (x) =
∑

M̃

D2Φ(dm(x)) · (Ddm(x))2 + DΦ(dm(x)) · D2dm(x) (3.27)

Because of the definition of M̃ we know that for all m ∈ M̃ , |dm(x)| < ε.

According to (3.12),

DΦ(dm(x)) = −2dm(x)

ε2
, (3.28)

what is obviously continuous. Since dm is twice continuous differentiable

and the product and sum of continuous functions is again continuous, F is

continuous and therefore Q is continuous differentiable with (3.26) as the

first derivative.

Analogously, according to (3.13),

D2Φ(dm(x)) = − 2

ε2
, (3.29)

which is also continuous. Since also (·)2 is continuous, DF (x) is continuous

and, including the previous statement, Q is twice continuous differentiable

with (3.27) as the second derivative.

Now we know that Q is twice continuous differentiable if dm is twice

continuous differentiable and S is true. As mentioned earlier, this does not
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guarantee a successful Newton step because the bounds may be too loose.

But we will see that a Newton step is successful in most of the cases if S is

true. As we will see from the results of the experiments with the example

datasets, the optimality condition is really not completely satisfied. But it is

close enough to optimal to speed up the solution of the discussed problems.

By the definition of optimality for the dynamic switching function we re-

quired the costs for evaluation to be less than O(n2) with respect to the num-

ber of dimensions. The dynamic switching function (3.21) can be computed

with a complexity of O(1). Therefore, the complexity condition is satisfied.

Since a branch and bound step costs O(n) and the evaluation of our dynamic

switching function costs O(1), they together also have a complexity of O(n)

and therefore are cheaper than a Newton step with a complexity of Ω(n2)

because of the Gauss Seidel iteration. We will also observe this speed-up

later using dynamic switching with the Newton method instead of the plain

Newton method.

The dynamic switching function (3.21) is cheap to evaluate because most

of the terms used already get evaluated for the value of Q. It also profits by

the matchlists because they already tell us which points clearly lie outside of

the neighborhood.

3.6 The Line Finding Problem

A line can be parameterized by an angle w of a normal n and an offset t along

that normal. See figure 3.4 for a visualization. For every point m = (mx, my),

the distance dm(w, t) to the line primitive can be calculated by projecting m

onto n and calculating the difference to t.

The quality function for the line finding problem can be formalized to-

gether with (3.1) and (3.2) as

qm(w, t) = Φ (cos(w)mx + sin(w)my − t) (3.30)

where w is the angle of the normal of the line and t the offset along this
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n

x

y

w

line primitive

m

dm(w,t)

t

Figure 3.4: Parameterization of the line

normal.

Referring to (3.17) ff, the only term we still need to differentiate is

dm(w, t) = cos(w)mx + sin(w)my − t (3.31)

The first and second derivatives of dm are

∇dm(w, t) =

(

− sin(w)mx + cos(w)my

−1

)

(3.32)

D∇dm(w, t) =

(

− cos(w)mx − sin(w)my 0

0 0

)

(3.33)

dm of this problem is obviously twice continuous differentiable. Plugging it

all together, the first derivative is

fm(w, t) = ∇qm(w, t) =

(

Φ′(∆t) t′rot(w)

−Φ′(∆t)

)

(3.34)
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where

∆t = trot(w) − t (3.35)

and

trot(w) = cos(w)mx + sin(w)my

t′rot(w) = − sin(w)mx + cos(w)my. (3.36)

This leads to the second derivative (3.14) with

Dfm(w, t) =
(

−Φ′(∆t)trot(w) + Φ′′(∆t)t′rot(w)2 −Φ′′(∆t)t′rot(w)

−Φ′′(∆t)t′rot(w) Φ′′(∆t)

)

(3.37)

Note that Dfm is symmetric. This is obvious for the areas where Q is twice

continuous differentiable. For the other areas where Q is not twice continuous

differentiable, Dfm is also symmetric if the interval arithmetic supports values

of ±∞.

3.7 The Circle Finding Problem

A circle can be parameterized by its center (x, y) and its radius r. See figure

3.5 for a visualization.

For every point m = (mx, my), the distance dm(x, y, r) to the circle prim-

itive can be calculated by computing the distance between m and the center

of the circle (x, y) and subtracting the radius r.

The quality function for the circle finding problem can be formalized

together with (3.1) and (3.2) as

qm(x, y, r) = Φ

(

√

(x − mx)2 + (y − my)2 − r

)

(3.38)

where x and y represent the center of the circle and r the radius.
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x

y

circle primitive

dm(x,y,r)
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Figure 3.5: Parameterization of the circle

For this problem, dm can be chosen as

dm(x, y, r) =
√

(x − mx)2 + (y − my)2 − r (3.39)

Assuming, tr 6= 0, the derivatives are

∇dm(x, y, r) =







(x − mx)/tr

(y − my)/tr

−1






(3.40)

D∇dm(x, y, r) =









∆y2

t3r

(

∆x∆y

t3r

)

0

· ∆x2

t3r
0

· · 0









(3.41)

where

tr =
√

(x − mx)2 + (y − my)2

∆t =
√

(x − mx)2 + (y − my)2 − r = tr − r (3.42)

Again, the matrix of the second derivative is symmetric. For simplicity, only

the upper right values are printed.
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tr is the distance from a point m to the center of the circle (x, y). We

require the lower bound r0.lo for the radius of the circle to be larger than the

ε of the Φ. Then, if the dynamic switching function is true, we know that

the distance between the circle and every point m contributing to the sum of

Q is smaller or equal to ε. Therefore, the distance to the center of the circle

is then larger or equal r0.lo − ε > 0 and tr is always larger than zero. The

previous assumption tr 6= 0 holds.

Inserting these equations into (3.17), we get

fm(x, y, r) = ∇qm(x, y, r) =







Φ′(∆t)(x − mx)/tr

Φ′(∆t)(y − my)/tr

−Φ′(∆t)






(3.43)

The second derivative calculates as

Dfm(x, y, r) =







d11 d12 d13

d12 d22 d23

d13 d23 d33







d11 = ∆y2 Φ′(∆t)

t3r
+ ∆x2 Φ′′(∆t)

t2r

d12 = ∆x∆y

(

Φ′′(∆t)

t2r
− Φ′(∆t)

t3r

)

d13 = ∆x
Φ′′(∆t)

tr

d22 = ∆x2 Φ′(∆t)

t3r
+ ∆y2Φ′′(∆t)

t2r

d23 = ∆y
Φ′′(∆t)

tr

d33 = Φ′′(∆t) (3.44)
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where

∆x = x − mx

∆y = y − my. (3.45)

There is also another parameterization possible:

qm(x, y, r) = Φ





√

(

x − mx

r

)2

+

(

y − my

r

)2

− 1



 (3.46)

This parameterization normalizes the (x − mx, y − my) to the unit circle

and compares it with one instead of directly comparing it with the radius.

The difference is the interpretation of ε. While in the first parameterization, ε

directly describes the maximum geometric distance a point is allowed to have

to be counted to the circle, in the second it describes the maximum geometric

distance a point is allowed to have to be counted to the circle, normalized

to the unit circle. The advantage of the first is, that ε can be intuitively

chosen by the user. The advantage of the second is that the allowed error

is related to the size of the found match. For example, a match of a small

circle requires higher accuracy than a match of a huge circle.

With respect to efficiency, the first one is more efficient. The equation

is simpler than the second and the derivatives are also simpler, resulting in

cheaper Newton steps.

3.8 The Ellipse Finding Problem

Multiple parameterizations of an ellipse are thinkable. Let us start with the

parameterization that will be used in the experiments later.
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3.8.1 Geometrically inspired Match Functions

An ellipse can be parameterized by its center (x, y) and the lengths of its main

axes a and b which are assumed to be parallel to the axes of the coordinate

system. See figure 3.6 for a visualization.

x

y

ellipse primitive

(x,y)

b

a

Figure 3.6: Parameterization of the ellipse

For every point m = (mx, my), the distance dm(w, t) to the ellipse prim-

itive can be calculated by scaling the scene by the lengths of the main axes

to transform the ellipse into a circle - into the unit circle in the following

calculations. Afterwards, the distance can be achieved as it was done for the

circle. Note that this is not the geometric distance which would require to

take the length of the line perpendicular to the ellipse through m.

Thus, the quality function for the problem of robust ellipse finding can

be formalized as

qm(x, y, a, b) = Φ





√

(

mx − x

a

)2

+

(

my − y

b

)2

− 1



 (3.47)

where x and y describe the center and a and b the length of the main axes

of the ellipse, which are assumed to be parallel to the axes of the coordinate

system.
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Therefore, dm is defined as

dm(x, y, a, b) =

√

(

mx − x

a

)2

+

(

my − y

b

)2

− 1 (3.48)

and assuming that tr 6= 0 and γ 6= 0 the derivatives are

∇dm(x, y, a, b) =













mx−x
tra2

my−y

trb2

(mx−x)2

tra3

(my−y)2

trb3













(3.49)

D∇dm(x, y, a, b) =













d11 d12 d13 d14

d12 d22 d23 d24

d13 d23 d33 d34

d14 d24 d34 d44













d11 =
a2(my − y)2

a2γtr

d12 = (mx − x)2(my − y)2−1/t3r
a2b2

d13 = (mx − x)
(b2(mx − x)2 + 2a2(my − y)2)

(b2t3ra
5)

d14 = (mx − x)(my − y)2 −1

t3ra
2b3

d22 =
b2(mx − x)2

b2γtr

d23 = (my − y)(mx − x)2 −1

t3rb
2a3

d24 = (my − y)
a2(my − y)2 + 2b2(mx − x)2

(a2t3rb
5)
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d33 = (mx − x)2 (2b2(mx − x)2 + 3a2(my − y)2)

b2t3ra
6

d34 = (mx − x)2(my − y)2 −1

t3ra
3b3

d44 = (my − y)2 (2a2(my − y)2 + 3b2(mx − x)2)

a2t3rb
6

(3.50)

where

tr =

√

(

mx − x

a

)2

+

(

my − y

b

)2

γ = b2(mx − x)2 + a2(my − y)2 (3.51)

Note that ε has to be smaller than one for this parameterization. Otherwise,

points with a distance larger than the length of the axes are regarded as

being part of the ellipse. Then, all points inside of the ellipse would be part

of the ellipse and therefore, an ellipse is returned which covers many points

adding to the sum of Q instead of actually finding an ellipse that fits to the

data points. There has to be an area inside the ellipse where points do not

contribute to Q.

We need to show that if the dynamic switching function equals true, dm

is twice continuous differentiable on x. It is sufficient to show that tr and

γ are larger than zero. All other functions used in the calculations are two

time continuous differentiable.

Theorem. If the dynamic switching function is true, then tr > 0 and γ > 0.

Proof. Because the dynamic switching function is true, we know that ∀ m ∈
M contributing to Q :

Φ





√

(

mx − x

a

)2

+

(

my − y

b

)2

− 1



 = Φ(tr − 1) > 0 (3.52)

By the definition of our Φ, this requires

|tr − 1| < ε (3.53)
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what is equivalent to

tr − 1 < ε ∧ 1 − tr < ε (3.54)

⇒ 1 − ε < tr < ε + 1 (3.55)

Because ε < 1 it is true that

tr > 0. (3.56)

Since this is true,

mx − x 6= 0 ∨ my − y 6= 0. (3.57)

Thus, γ is also larger than zero.

Finally, the first derivative evaluates to:

fm(x, y, a, b) = −Φ′(∆t) ·













mx−x
tra2

my−y

trb2

(mx−x)2

tra3

(my−y)2

trb3













(3.58)

And the second derivative to:

Dfm(x, y, a, b) =













d11 d12 d13 d14

d12 d22 d23 d24

d13 d23 d33 d34

d14 d24 d34 d44
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d11 =
a2(my − y)2Φ′(∆t) + b2(mx − y)2trΦ

′′(∆t)

a2γtr

d12 = (mx − x)2(my − y)2−Φ′(∆t)/t3r + Φ′′(∆t)/t2r
a2b2

d13 = (mx − x)

(

(b2(mx − x)2 + 2a2(my − y)2)Φ′(∆t)

(b2t3ra
5)

+
a2b2(mx − x)2Φ′′(∆t)

γa5

)

d14 = (mx − x)(my − y)2−Φ′(∆t)/t3r + Φ′′(∆t)/t2r
a2b3

d22 =
b2(mx − x)2Φ′(∆t) + a2(my − y)2trΦ

′′(∆t)

b2γtr

d23 = (my − y)(mx − x)2−Φ′(∆t)/t3r + Φ′′(∆t)/t2r
b2a3

d24 = (my − y)

(

(a2(my − y)2 + 2b2(mx − x)2)Φ′(∆t)

(a2t3rb
5)

+
b2a2(my − y)2Φ′′(∆t)

γa5

)

d33 = (mx − x)2

(

(2b2(mx − x)2 + 3a2(my − y)2)Φ′(∆t)

b2t3ra
6

+
a2b2(mx − x)2Φ′′∆

γa6

)

d34 = (mx − x)2(my − y)2

(−Φ′(∆t)

t3ra
3b3

+
Φ′′(∆t)

t2ra
3b3

)

d44 = (my − y)2

(

(2a2(my − y)2 + 3b2(mx − x)2)Φ′(∆t)

a2t3rb
6

+
b2a2(my − y)2Φ′′∆

γb6

)

(3.59)

where

∆t = tr − 1 (3.60)

Repeated terms should be evaluated only once to accelerate the evaluation.

This is done in the code corresponding to the later results. These optimiza-

tions are left out here to not introduce too many variables.

Analogously to the second parameterization of the circle, this scales the

allowed error defined by ε with the size of the current match. It also does it
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separately for both main axes. This has to be remembered when these formu-

las are used. For the ellipse, keeping ε as the real allowed distance between

the shape of the ellipse and a point, results in a much more complicated

parameterization. However, if the main axes of the ellipses that should be

found are not too degenerated, the following parameterization approximates

this behavior.

qm(x, y, a, b) = Φ









√

(

mx − x

a

)2

+

(

my − y

b

)2

− 1





a + b

2



 (3.61)

The downside is, the additional factor complicates the derivatives even more.

Besides, scaling the allowed error with the size of the match may be desired,

if we assume that the error in the data scales with size of the objects that

have to be found.

3.8.2 Algebraic Match Functions

Another useful parameterization comes from the algebraic distance:

An ellipse is defined as all points (mx, my) fulfilling

Γ(mx, my) = Am2
x + Bmxmy + Cm2

y + Dmx + Emy + F = 0 (3.62)

The algebraic distance of a point (mx, my) is defined by Γ(mx, my). Ob-

viously, if it is zero, the point m belongs to the ellipse. Note that this is

actually different from the distance from the first paraterization.

Many approaches have been tried to least square fit an ellipse into a set

of points minimizing the algebraic distance. Fitzgibbon, Pilu and Fisher [8]

discussed methods based on that approach. One problem is that there are

six unknowns but only five degrees of freedom for a rotated ellipse and five

unknowns but only four degrees of freedom for the axes aligned ellipse respec-

tively. This equation also describes parabola and hyperbola. To guarantee

that the result is an ellipse,

B2 − 4AC < 0 (3.63)
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has to hold. Otherwise, the result may not be an ellipse. Since we are

currently dealing with axes aligned ellipses, we can set B = 0. Obviously,

(3.63) is satisfied if we choose A and C to be positive. Returning to our

setup of qualify functions, if qm is defined as

dm(x, y, a, b) = Am2
x + Cm2

y + Dmx + Emy + F (3.64)

an optimal match considering the algebraic distance is found. Note that in

contrast to Fitzgibbon, Pilu and Fisher, this describes a robust fit instead of

a least square fit. The geometric equation of the ellipse is

(mx − px)
2

a2
+

(my − py)
2

b2
= f (3.65)

where p is the center of the ellipse, can be transformed into

m2
x

a2
+

m2
y

b2
− 2

pxmx

a2
− 2

pymy

b2
+

p2
x

a2
+

p2
y

b2
− f = 0 (3.66)

Comparing coefficients with (3.64), the unknowns get

A =
1

a2
, C =

1

b2
, D = −2

px

a2
, E = −2

py

b2
,

F =
p2

x

a2
+

p2
y

b2
− f (3.67)

Without loss of generality, we can set f = 1, because the scaling of equation

(3.65) produced by f can be calculated into a and b. It is still possible to

represent every ellipse with f = 1 except for the degenerated case where

f = 0.

F =
p2

x

a2
+

p2
y

b2
− 1 =

D2

4A
+

E2

4C
− 1 (3.68)

Switching our parameter spaces, we can calculate the new bounds where a

solution has to be found in with respect to the new parameter space by (3.67)

and redefine qm as

dm(A, C, D, E) = Am2
x + Cm2

y + Dmx + Emy +
D2

4A
+

E2

4C
− 1 (3.69)
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This parameterization turns out to be far less efficient than the one described

at the beginning. The parameter space gets deformed in a nonlinear way

and for branch and bound, splitting an interval in the middle is not optimal

anymore. A more efficient parameterization than this can be obtained by

combining the idea of the geometric and algebraic distance. Setting D = 0

and E = 0 shifts the center of the ellipse as in the first parameterization, we

get

dm(x, y, A, C) = A(x − mx)
2 + C(y − my)

2 − 1 (3.70)

The center of the ellipse gets shifted and only the lengths of the ellipse axes

are handled the algebraic way. This parameterization still was not as efficient

as the geometric parameterization shown before. Therefore, the experimental

results that will be discussed later are based on the first geometric parame-

terization (3.30).

3.9 Finding Ellipses at Arbitrary Orientations

An rotated ellipse can be parameterized by its center (x, y) and the lengths

of its main axes a and b and an angle w between the first main axis and one

of the axis of the coordinate system. See figure 3.7 for a visualization.

For every point m = (mx, my), the distance dm(w, t) to the ellipse prim-

itive can be calculated by rotating the point by w around the origin and

scaling the dataset by the lengths of the main axes to transform the ellipse

into the unit circle. Afterwards, the distance can be achieved like it was

done for the circle. Again this is not the same as the geometric distance for

the same reason as for the axes aligned ellipse, but it behaves reasonably in

practice for commonly used parameters.

Consequently, the problem of robust rotated ellipse finding can be for-
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x
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rotated ellipse primitive

(x,y)

b
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Figure 3.7: Parameterization of the rotated ellipse

malized as

qm(x, y, a, b, w) = Φ

((

(

cos (w)mx + sin (w)my − x

a

)2

+

(− sin (w)mx + cos (w)my − y

b

)2
)

1
2

− 1



 (3.71)

Therefore, dm equals to

dm(x, y, a, b, w) =

√

(

vx − x

a

)2

+

(

vy − y

a

)2

− 1. (3.72)

with

vx = cos (w)mx + sin (w)my

vy = − sin (w)mx + cos (w)my (3.73)

For the areas where the dynamic switching function is true and if ε < 1, the

49



derivatives of dm are

∇dm(x, y, a, b, w) =

















vx−x
tra2

vy−y

trb2

(vx−x)2

tra3

(vy−y)2

trb3

− (vy−y)vx

trb2
+ vy(vx−x)

tra2

















(3.74)

D∇dm(x, y, a, b) =

















d11 d12 d13 d14 d15

d12 d22 d23 d24 d25

d13 d23 d33 d34 d35

d14 d24 d34 d44 d45

d15 d25 d35 d45 d55

















d11 =
1

a4

(

−(vx − x)2

t3r
+

a2

tr

)

d12 = −(vx − x)(vy − y)

a2b2t3r

d13 =
vx − x

a5

(

−(vx − x)2

t3r
+

2a2

tr

)

d14 = −(vy − y)2(vx − x)

a2b3t3r

d15 =
1

2a2

(

(vx − x)η

t3r
− 2vy

tr

)

d22 =
1

b4

(

−(vy − y)2

t3r
+

b2

tr

)

d23 = −(vx − x)2(vy − y)

b2a3t3r

d24 =
vy − y

b5

(

−(vy − y)2

t3r
+

2b2

tr

)

d25 =
1

2b2

(

(vy − y)η

t3r
− 2vx

tr

)
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d33 =
(vx − x)2

a6

(

−(vx − x)2

t3r
+

3a2

tr

)

d34 = −(vx − x)2(vy − y)2

a3b3t3r

d35 =
vx − x

2a3

(

(vx − x)η

t3r
− 4vy

tr

)

d44 =
(vy − y)2

b6

(

−(vy − y)2

t3r
+

3b2

tr

)

d45 =
vy − y

2b3

(

(vy − y)η

t3r
− 4vx

tr

)

d55 = − η2

4t3r
+
(

(m2
x − m2

y)(a
2 − b2) cos(2w)

+(myb
2x − mxa

2y) sin(w) + cos(w)(mxb
2x + mya

2y

+mxmy(a
2 − b2) sin(w))

)

· 1

a2b2tr
(3.75)

where

tr =

√

(

vx − x

a

)2

+

(

vy − y

b

)2

γ = b2(vx − x)2 + a2(vy − y)2

η = 2

(

−(vy − y)vx

b2
+

vy(vx − x)

a2

)

(3.76)

We have to impose the same restriction for the same reason to the ε as done

for the axes aligned ellipse: ε < 1.

We know that quality function of the axes aligned ellipse is twice con-

tinuous differentiable if the dynamic switching function is true. The quality

function of the rotated ellipse only differs in the previous rotation of the

scene. Since rotation is a twice continuous differentiable function, it also

holds for the rotated ellipse.
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Finally, the first derivative evaluates to:

fm(x, y, a, b, w) = −Φ′(∆t)

















vx−x
tra2

vy−y

trb2

(vx−x)2

tra3

(vy−y)2

trb3

− (vy−y)vx

trb2
+ vy(vx−x)

tra2

















(3.77)

And the second derivative:

Dfm(x, y, a, b, w) =

















d11 d12 d13 d14 d15

d12 d22 d23 d24 d25

d13 d23 d33 d34 d35

d14 d24 d34 d44 d45

d15 d25 d35 d45 d55

















d11 =
1

a4

(

−(vx − x)2Φ′(∆t)

t3r
+

a2Φ′(∆t)

tr
+

(vx − x)2Φ′′(∆t)

t2r

)

d12 =
(vx − x)(vy − y)

a2b2

(−Φ′(∆t)

t3r
+

Φ′′(∆t)

t2r

)

d13 =
vx − x

a5

(

−(vx − x)2Φ′(∆t)

t3r
+

2a2Φ′(∆t)

tr
+

(vx − x)2Φ′′(∆t)

t2r

)

d14 =
(vy − y)2(vx − x)

a2b3

(

−Φ′(∆t)

t3r
+

Φ′′(∆t)

t2r

)

d15 =
1

2a2

(

(vx − x)ηΦ′(∆t)

t3r
− 2vyΦ

′(∆t)

tr
− (vx − x)ηΦ′′(∆t)

t2r

)

d22 =
1

b4

(

−(vy − y)2Φ′(∆t)

t3r
+

b2Φ′(∆t)

tr
+

(vy − y)2Φ′′(∆t)

t2r

)

d23 =
(vx − x)2(vy − y)

b2a3

(

−Φ′(∆t)

t3r
+

Φ′′(∆t)

t2r

)

d24 =
vy − y

b5

(

−(vy − y)2Φ′(∆t)

t3r
+

2b2Φ′(∆t)

tr
+

(vy − y)2Φ′′(∆t)

t2r

)

d25 =
1

2b2

(

(vy − y)ηΦ′(∆t)

t3r
− 2vxΦ

′(∆t)

tr
− (vy − y)ηΦ′′(∆t)

t2r

)
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d33 =
(vx − x)2

a6

(

−(vx − x)2Φ′(∆t)

t3r
+

3a2Φ′(∆t)

tr
+

(vx − x)2Φ′′(∆t)

t2r

)

d34 =
(vx − x)2(vy − y)2

a3b3

(

−Φ′(∆t)

t3r
+

Φ′′(∆t)

t2r

)

d35 =
vx − x

2a3

(

(vx − x)ηΦ′(∆t)

t3r
− 4vyΦ

′(∆t)

tr
− (vx − x)ηΦ′′(∆t)

t2r

)

d44 =
(vy − y)2

b6

(

−(vy − y)2Φ′(∆t)

t3r
+

3b2Φ′(∆t)

tr
+

(vy − y)2Φ′′(∆t)

t2r

)

d45 =
vy − y

2b3

(

(vy − y)ηΦ′(∆t)

t3r
− 4vxΦ

′(∆t)

tr
− (vy − y)ηΦ′′(∆t)

t2r

)

d55 = −η2Φ′(∆t)

4t3r
+
(

(m2
x − m2

y)(a
2 − b2) cos(2w)

+(myb
2x − mxa

2y) sin(w) + cos(w)(mxb
2x + mya

2y

+mxmy(a
2 − b2) sin(w))

)

· Φ′(∆t)

a2b2tr
+

η2Φ′′(∆t)

4t2r
(3.78)

where

∆t = tr − 1 (3.79)

Because the scene is rotated around the origin of the coordinate system, the

scene has to be transformed to be around zero. Alternatively, the scene can

be rotated around the center of the ellipse:

qm(x, y, a, b, w) = Φ

((

(

cos (w)(x − mx) + sin (w)(y − my)

a

)2

+

(− sin (w)(x − mx) + cos (w)(y − my)

b

)2
)

1
2

− 1



 (3.80)

This parameterization turned out to be less efficient than the previous one

in the experiments because of even more terms produced in the derivatives.
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Chapter 4

Evaluation

This chapter provides the results of performance tests between the several

variations of the branch and bound method and Interval Newton method.

4.1 The Datasets

The algorithms are tested on different geometric matching problems. For

each problem equivalence classes are defined and representative datasets are

selected. Each dataset consists of a set of points from which the optimal

geometry of the particular problem has to be found. The considered problems

are:

- line finding

- circle finding

- ellipse finding

- finding ellipses at arbitrary orientations

See figure 4.1 for examples of these problems. The domain of the points is

[−1, 1]2. The points get an additional error to the defining primitive. For each

problem, the error is chosen randomly for each dataset between 0 and 0.01.
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Figure 4.1: Examples of the datasets used in the experiments.

In practice, this means, assuming a picture of 10002 pixels, the displacements

of the features are allowed to be within five pixels. The equivalence classes

for each problem are:

- simple data only consisting of points describing the primitive.

- simple data and additional uniformly distributed random points.

- only uniformly distributed random points.

See Figure 4.2 for examples. The third class represents the worst case be-

cause in general there is no favored match to find. Everywhere in parameter

space the quality of a match is almost identical. The first class represents

the best situation for the algorithm. It shows the lower limit of the time

needed. The second class describes a typical situation. An optimal match
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Figure 4.2: Examples of the classes of test cases for line finding. From the
left to the right, the pictures show class one to class three.

clearly exists but is harder to find because of additional noise in the given

data.

The number of points in the three classes is always 100. For the first class,

all points belong to the primitive that has to be found. For the second class,

50 points belong to the primitive and 50 are additional uniformly distributed

random points. The third class only consists of random points.

4.2 Evaluation

We applied five algorithms to the datasets of the line and the circle, all

slightly modified versions of the branch and bound or Interval Newton method.

- the original branch and bound method

- the branch and bound method using matchlists

- the plain Interval Newton method

- the Interval Newton method using dynamic switching to decide whether

to try a Newton step or not

- the Interval Newton method with dynamic switching and matchlists

For the ellipse and rotated ellipse datasets only the best representatives of

branch and bound and Newton were tested, namely the branch and bound
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method using matchlists and the Interval Newton method with dynamic

switching and matchlists, items two and five in the previous list.

4.3 The Empirical Results

In this section the results of the tests are presented and discussed. All the

described tests were evaluated on a Pentium 4 with 2.4 GHz and 2 GB of

RAM. The gcc compiler version 3.3.3 with optimization for speed -O2 was

used.

4.3.1 The Line Finding Problem

Figures 4.3 and 4.4 show the results for the three classes for the line finding

problem. There are several observations to make from these plots. First of

all, we see that the calculation time needed for the Newton methods nearly

stops to raise at some point of accuracy while the branch and bound methods

keep rising it. The simple Newton method without dynamic switching is

the worst in the beginning. Therefore, by applying dynamic switching, the

Newton method behaves like branch and bound in the beginning and at some

point, it switches to using Newton steps. Using Newton steps occurs later,

the more random noise there is in the datasets. For the plain line, it starts at

an accuracy of 0.002. For the line with random points this point is already

shifted to an accuracy of 0.003. For the random points, it starts with an

accuracy of 0.0001. In the beginning, branch and bound steps are used to

separate the noise points from the points belonging to the line and later on,

Newton steps are used to achieve a higher accuracy.

Another point to be mentioned is the influence of the matchlists on the

speed. In the first case, the matchlist versions are even slower than the

methods using matchlists, because all points in the dataset belong to the

optimal solution. So the overhead of keeping the matchlist data structures

does not turn out to be more efficient in this case since the calculation of the

distance test in the non-matchlists version is cheap enough. As mentioned
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Figure 4.3: Speed comparison between the five methods discussed in the text
on the first two classes of datasets for the line finding problem. The first one
is for the plain line, the second for the line with additional random points.

earlier, this can be done efficiently by reusing the calculated terms for the

evaluation of the function to be optimized. This advantage vanishes as the

random noise in our dataset gets larger. In the second plot, the matchlist

versions are already faster and in the last plot, where there are only random

points, the difference gets even larger. In practical situations we will probably

always have some noise, so in general using matchlists is the right choice.

But if we know for some reason that the data is nice, choosing not to use

matchlists might be better.
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Figure 4.4: Speed comparison between the five methods discussed in the text
on the third class, having only random points, for the line finding problem.
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Figure 4.5: The 100 representatives of the class of line dataset with random
points that were used. On the left side the times to get an accuracy of
10−2.5 is plotted and on the right for an accuracy of 10−5 per parameter in
parameter space. Times are given in milliseconds.

In Figure 4.5 the representatives of the class of the line dataset with ran-

dom points that were used are shown. The plots are only for the branch and

bound method with matchlists and Newton method with dynamic switching

and matchlists. Again we see that at low accuracy the methods behave the

same while at higher accuracy Newton has an advantage. We also see that

not only the calculation time rises for higher accuracy, but the distribution

of the single problems rises, too. Figures 4.6 and 4.7 show the maximum

and minimum times taken for a specific accuracy over the datasets. As we

can see, the behavior discussed above for the averaged plots also applies to

the easiest and hardest datasets. Note that for the case of equivalence class
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Figure 4.6: Maximum and minimum of the running times over the 100
datasets for a given accuracy for the line finding problem. The first plot
corresponds to equivalence class one, the second to class two. Note that
the waves in the plots come from measurement accuracies. Since the values
are minima and maxima, there no averaging occurred that removes these
artifacts.

three, the methods with matchlists on the worst dataset were faster than the

corresponding method without matchlists on the simplest dataset. This un-

derlines the efficiency of matchlists on noisy input data. There are very few

cases where branch and bound is better. For example, for the given datasets

with some noise, Newton is always the better choice.

Figure 4.8 shows the number of iterations for a desired accuracy. The
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Figure 4.7: Maximum and minimum of the times over the 100 datasets for
a given accuracy for the line finding problem. The plot corresponds to the
third class of datasets.

values are achieved from the line finding problem with one line and addi-

tional random points. Again the values are averaged over 100 datasets. The

first plot is related to the Newton method without dynamic switching. The

second plot represents the Newton method with dynamic switching. The

area from the bottom to the first graph describes the number of iterations

spent with branch and bound steps. The uppermost area describes the num-

ber of iterations spent with successful Newton steps. The area in between

represents the number of unsuccessful Newton steps. Note that in the case

of the Newton method without dynamic switching, the number of iterations

for the Branch and Bound steps are zero. As we can see, the complete num-

bers of iterations are nearly equal. The area of unsuccessful Newton steps in

the case of plain Newton is substituted with branch and bound steps if we

use dynamic switching. There is just a small number of iterations used for

unsuccessful Newton steps left. Therefore, our dynamic switching function

is well adapted to the line finding problem.
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Figure 4.8: The effectiveness of dynamic switching with respect to the line
finding problem. The first plot is related to the Newton method without
dynamic switching. The second plot represents the Newton method with
dynamic switching.
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4.3.2 The Circle Finding Problem
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Figure 4.9: Speed comparison between the five methods discussed in the text
on the first two classes of datasets for the circle finding problem. The first
one is for the plain circle, the second for the circle with additional random
points.

The experimental results of the circle finding problem show the same

behavior as the results of the line finding problem. Figures 4.9 and 4.10

show the results for the three classes of the circle finding problem. Again

we see that the Newton method at some point start to converge extremely

fast to the solution, offering higher accuracy at practically no additional

cost from that point on, while the time needed by the branch and bound
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Figure 4.10: Speed comparison between the five methods discussed in the
text on the third class, having only random points, for the circle finding
problem.

methods increases with the desired accuracy. In the beginning, the plain

Newton method is the worst. Once again, it turned out to be efficient to

use branch and bound steps in the beginning and to switch to Newton steps

later on, decided by the Dynamic Switching Function.

We also see that the use of matchlists accelerates the algorithm depending

on the noise in the dataset. For the plain circle dataset, there is practically no

difference between the methods not using matchlists and the methods using

them. In contrast to the line finding problem, where the overhead produced

by the handling of the data structures for the matchlists slowed down the

method applied to the plain primitive dataset, the overhead is negligible

in the circle case with respect to the higher complexity of calculations per

step. For the second dataset with 50% noise, there is already an acceleration

and for the third dataset only consisting of noise, the speed increase is even

higher. Thus, if a problem is not very simple, using matchlists is the right

choice.

Figure 4.11 shows the maximum and minimum times taken for a specific

accuracy over the datasets. As we can see, the behavior discussed above for

the averaged plots also applies to the easiest and hardest datasets. Therefore

there are very few cases where branch and bound is better. For the given
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Figure 4.11: Maximum and minimum of the times over the 100 datasets for
a given accuracy for the circle finding problem. The second class, containing
a circle and additional random points is shown.

datasets, for example, Newton is always the better choice.

Figure 4.12 shows the number of iterations with respect to accuracy.

The values are achieved from the circle finding problem with one circle and

additional random points. Again the values are averaged over 100 datasets.

The first plot is related to the Newton method without dynamic switching.

The second plot represents the Newton method with dynamic switching.

The graph have to be interpreted as figure 4.8 for the line finding problem.

Note that in the case of the Newton method without dynamic switching, the

number of iterations for the Branch and Bound steps is zero. As we can

see, the complete numbers of iterations are nearly equal. The unsuccessful

Newton steps in the case of plain Newton are replaced by branch and bound

steps if we use dynamic switching. Just a small number of iterations used for

unsuccessful Newton steps is left. Therefore, our dynamic switching function

is well suited to the circle finding problem.
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Figure 4.12: The effectiveness of dynamic switching with respect to the circle
finding problem. The first plot is related to the Newton method without
dynamic switching. The second plot represents the Newton method with
dynamic switching.
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4.3.3 The Ellipse Finding Problem

This section discusses the results for the ellipse finding problem. Because we

already saw the advantage of using matchlists and dynamic switching, the

latter only for Newton, we omit measurements for the methods not using

them. Therefore, only branch and bound with matchlists and Newton with

dynamic switching and matchlists will be compared in the following text.
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Figure 4.13: Speed comparison between the branch and bound method with
matchlists and the Newton method with dynamic switching and matchlists
on the first two classes of datasets for the ellipse finding problem. From the
top to the bottom: plain ellipse, ellipse with additional random points.

Figure 4.13 and 4.14 show the speed measurements for the two methods
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Figure 4.14: Speed comparison on the third class, having only random points,
for the ellipse finding problem.
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Figure 4.15: The 100 representatives of the ellipse dataset with random
points. The times are with respect to an required accuracy of 10−2.5 and
10−5 per parameter in parameter space. The times are given in milliseconds.

on the ellipse finding problem averaged over 100 datasets. The behavior of

the methods we already know from the previous problems are also visible in

the first two plots. At some point the Newton method gets higher accuracy

nearly for free while the branch and bound method needs a lot of time to

gain a high accuracy. In comparison to the previous problems, we see that

the problem is harder to solve than finding a line or a circle. The point

where Newton stops to take time for higher precision is later than for the

other problems. We can also see that there is an area of accuracy where

branch and bound is faster than Newton. We can explain that by either

Newton steps that were not optimal or by Newton steps being optimal, but
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Figure 4.16: Maximum and minimum of the times over the 100 datasets for
a given accuracy for the ellipse finding problem. The first corresponds to
the plain ellipse datasets. The second to the ellipse datasets with additional
uniformly distributed points.

only shrinking the interval by less than one half. If splitting the interval

by half is better, branch and bound is faster in that case. In the third plot

the behavior might be different. Newton is still faster, but we cannot see

if branch and bound might also perhaps behave like Newton. Probably, it

does not, but the calculations are not run long enough to ensure this guess

from the averaged plot. For estimates of the behavior of the methods for

practical applications, the statements we got from the second plot are the

most important.
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Figure 4.17: Maximum and minimum of the times over the 100 datasets for
a given accuracy for the ellipse finding problem. The plot corresponds to the
random datasets.

In Figure 4.15, we see again that the Newton method behaves like the

branch and bound method in the beginning. At higher accuracies, it switches

to Newton steps and gains speed. An interesting observation is that in gen-

eral, Newton becomes faster for high accuracy, but comparing single datasets

we see that most of them are easy to solve, taking less than three seconds

for an accuracy of 10−5 while there are also a few datasets taking drastically

more time. For real time applications, these few datasets destroy a small

bound for the needed time for specific datasets. If the method should be

used in an area where guaranteed low bounds for time with respect to a

specified accuracy is needed, the problem created by so few datasets should

be investigated further in detail first.

Looking at the minimum and maximum of the time taken for the sample

datasets 4.16, we see that the behavior observed from the averaged plots

also applies to the minimum and maximum. Therefore, we can expect this

behavior in practical situations. For the random dataset 4.17 we can see

that the expected behavior also applies to the minimum. So that is one more

reason why our original guess, that the behavior of the methods also applies

for the random dataset is right.

Observing the iterations made, 4.18 shows that the dynamic switching
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Figure 4.18: The effectiveness of dynamic switching. The plots represent the
Newton method with dynamic switching. The first corresponds to the plain
ellipse datasets. The second to the ellipse datasets with additional points.

function is at least nearly optimal for the ellipse finding problem. Nearly

every Newton step made was successful. For the random dataset 4.19 no

Newton steps were made. The method did not reach the area of accuracy

where the quality function becomes twice continuous differentiable within

the maximum calculation time specified. Newton steps would not have been

successful and therefore, no Newton steps were made.

Concluding the measurements of the ellipse finding problem, one can say

that the Newton method is faster than the branch and bound method and
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Figure 4.19: The effectiveness of dynamic switching. The plot represents
the Newton method with dynamic switching and the plot corresponds to the
random datasets.

the behavior of the Newton method, getting accuracy for free at some point,

is valid for this problem, too. The disadvantages are, that the worst case

where no ellipse can be found, takes much longer than the case where an

ellipse is in the dataset. Furthermore, there were some special datasets that

took much longer than the majority of datasets. If a system tries to find

ellipses in a dataset where there might be no ellipses, this method has a

comparatively high bound of runtime.

4.3.4 Finding Ellipses at Arbitrary Orientations

This section discusses the results for the rotated ellipse finding problem.

As already seen from the previous problems, the point where the Newton

method actually uses Newton steps recedes as the number of dimensions

of the problem rises. Figure 4.20 and 4.21 show that this point recedes so

much, that the behavior of the branch and bound method and Newton are

the same within the measured time interval. The minimum and maximum

plots 4.23 show basically the same, but there is at least one dataset of the

second class where the Newton method comes to the point with a high speed

of convergence.
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Figure 4.20: Speed comparison between the branch and bound method with
matchlists and the Newton method with dynamic switching and matchlists on
the first two classes of datasets for the rotated ellipse finding problem. From
the top to the bottom: plain rotated ellipse, rotated ellipse with additional
random points.

In Figure 4.22 we see again that the behavior of the two methods are the

same at the beginning. But later on, for single datasets, the two methods

take different steps. Newton actually makes some Newton steps, but it does

not get clearly faster than the branch and bound method. Instead, for some

datasets, Newton is faster, for others branch and bound is. Averaged over

the datasets, both methods are nearly equally fast as already noted. The

number of Newton steps that were done is very low. In the iterations plots
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Figure 4.21: Speed comparison on the third class of datasets, having only
random points, for the rotated ellipse finding problem.
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Figure 4.22: The 100 representatives of the rotated ellipse dataset. The
times are with respect to an required accuracy of 10−2, 10−4 per parameter
in parameter space. Times are given in milliseconds.

4.24 they are not even visible.
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Figure 4.23: Maximum and minimum of the times over the 100 datasets
for a given accuracy for the rotated ellipse finding problem. The first corre-
sponds to the plain rotated ellipse datasets. The second to the rotated ellipse
datasets with additional points and the third to the random datasets.
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Figure 4.24: The effectiveness of dynamic switching. The plots represent
the Newton method with dynamic switching. The first corresponds to the
plain rotated ellipse datasets. The second to the rotated ellipse datasets with
additional points and the third corresponds to the random datasets
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4.4 Analysis of the Results

The Newton method accelerates the problems of robust line finding, robust

circle finding and robust ellipse finding problem on point based datasets

compared to the branch and bound method. For the robust rotated ellipse

finding problem, no acceleration can be duplicated.

Matchlists were experimentally shown to accelerate the methods for most

cases, except for comparatively simple noise free datasets.

The purpose of these simulations was to analyze the effects of the differ-

ent implementation strategies and to support experimentally the notion that

dynamic switching and interval Newton methods can speed up matching. In

the next chapter, we will request more information as input: the orienta-

tion associated with the point features. Such orientation information can be

obtained, for example, from image gradients.
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Chapter 5

Using Feature Orientations

The methods discussed before only considered one constraint for finding a

match: the position of the points in the datasets. But other constraints are

imaginable. If additional knowledge is available, this can be integrated in

the previous methods. Later on we will use the rotation of the points as a

second constraint. But for now, let us discuss multiple constraint matching

in general.

5.1 Statistical Examination of Multiple Con-

straints

Suppose, we have k constraints we want to get fulfilled with equal weighting.

Assume a Gaussian error model for all constraints. For every constraint i let

the probability, of having a feature xi while the correct value is Xi be:

Pi(xi) = aie
− (xi−Xi)

2

bi (5.1)

with constants ai = 1√
2πσ2

i

and bi =
σ2

i

2
where σ2

i is the variance.

Assuming an equal and independent distribution of the noise for the
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datasets of each constraint, the probability of having a feature somewhere is

Ni(xi) = Ni,0 (5.2)

Assuming independent Gaussian distributions, the probability of a feature

with values x = (xi)
k−1
i=0 is

P (x) =
k−1
∏

i=0

Pi(xi) =
k−1
∏

i=0

aie
− (xi−Xi)

2

bi (5.3)

N(x) =
k−1
∏

i=0

Ni(xi) = N0 (5.4)

Switching to log-likelihood functions, this leads to

Pl(x) = m +

k−1
∑

i=0

(xi − Xi)
2

bi

(5.5)

where m = log(
∏k−1

i=0 ai), but constant offsets can be omitted and

Nl(x) = log N0 (5.6)

Building a classifier from these two distributions, we assign a value x to be

a part of the object to be found if Pl(x) ≥ Nl(x) and we assign it to the

background noise if Pl(x) < Nl(x) . The classifier does not change, if we

scale and shift it along the y-axis. We get a likelihood function telling us if a

point in the dataset is a point of the solution or if it is produced from noise:

Φ(x) = max

(

0, 1 − 1

k

k−1
∑

i=0

(xi − Xi)
2

bi

)

(5.7)

This looks like the Φ defined before but for multiple dimensions.

79



5.2 The Multiple Constraint Problem

Setting X to the origin in (5.7), we get the new optimization problem:

argx max
x∈X

Q(x) (5.8)

Q(x) =
∑

m∈M

qm(x) (5.9)

qm(x) = Φ (dm(x)) (5.10)

Φ(x) = max

(

0, 1 − 1

k

k−1
∑

i=0

x2
i

ε2
i

)

(5.11)

In comparison to the previous problem definition dm is now a function map-

ping from Rn → Rk, where n is number of dimensions in the parameter space

as before while k is the number of constraints. The question arises, whether

the assumption of independent Gaussian distributions is suitable. Alterna-

tively, one may want to multiply the single constraints instead of adding

them:

Φalt(x) =
k−1
∏

i=0

(

max

(

0, 1 − x2
i

ε2
i

))

(5.12)

At first sight, this looks like a better approach because Φalt(x) gets zero if at

least one of the constraints is not fulfilled within the corresponding εi.
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Figure 5.1: Plot of Φalt
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Figure 5.1 shows a plot of Φalt in two dimensions with ε0 = 2 and ε1 = 3.

It can be clearly seen that there is a rectangular area in parameter space

[−ε0, ε0] × [−ε1, ε1] where Φ is larger than zero. Everywhere else, it is zero.

Thus, it is sufficient for a point to be ignored, if one constraint is not fulfilled.

Unexpected solutions only fulfilling one constraint perfectly will not be the

result.

In contrast to this, a sum does not have this property. Assuming that

only one constraint i is not fulfilled in (5.11) within the corresponding εi, qm

can still be larger than zero.
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Figure 5.2: Plot of Φ

But looking at 5.2, we see that at some distance from the origin, every-

thing gets zero like for Φalt. Thus it also cannot happen that a solution is

returned where only one constraint is perfectly fulfilled and another is not

fulfilled. Instead of a rectangular area where the function is larger than zero,

there is an elliptic area including the rectangular area of Φalt.

The Φ is still local. The behavior is identical to Φalt for our purpose. The

εi have to be chosen a bit differently for Φ and Φalt. One advantage of Φ over

Φalt is that there is a statistical explanation, even though the assumption of

independent Gaussian distributions may not be correct for every situation.

But the more important advantage of Φ is that the derivative of a sum is

again a sum, while the derivative of a product leads to applying the chain
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rule. Especially the second derivative of Q would produce a lot more terms

with Φalt than with Φ, resulting in longer calculation times. Therefore, Φ is

the better choice in combination with the Newton method.

5.3 Derivatives of the Problem

For multiple constraints, we get another dimension in the formulas. The

calculations involve tensors of degree three. Hence, we cannot keep on writing

the formulas as matrices. Let us define the different spaces and their bases

that get involved.

Rk = span{ei : 0 ≤ i < k}
Rn = span{fj : 0 ≤ j < n} (5.13)

The important functions are

Φ : Rk → R

dm : Rn → Rk (5.14)

They and their derivatives are

Φ(x) = Φ(x) · 1

DΦ(x) =

k−1
∑

i=0

DΦi(x) ei

D2Φ(x) =

k−1
∑

i=0

k−1
∑

ĩ=0

D2Φi,̃i(x) ei ⊗ eĩ (5.15)
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dm(x) =

k−1
∑

i=0

dm,i(x) ei

Ddm(x) =

k−1
∑

i=0

n−1
∑

j=0

Ddm,i,j(x) ei ⊗ fj

D2dm(x) =

k−1
∑

i=0

n−1
∑

j=0

n−1
∑

j̃=0

D2dm,i,j,j̃(x) ei ⊗ fj ⊗ fj̃ (5.16)

Calculating the first derivative of qm, we get

qm(x) = Φ(dm(x))

Dqm(x) = DΦ(dm(x))Ddm(x)

=

(

k−1
∑

i=0

DΦi(x) ei

)

·
(

k−1
∑

i=0

n−1
∑

j=0

Ddm,i,j(x) ei ⊗ fj

)

=
n−1
∑

j=0

(

k−1
∑

i=0

DΦi(x)Ddm,i,j(x)

)

fj

(5.17)

we handle the second derivative as two terms

D2qm(x) = T1 + T2

T1 =
(

D2Φ(dm(x)) · Ddm(x)
)

· Ddm(x)

T2 = DΦ(dm(x)) · D2dm(x) (5.18)
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Thus, T1 equals to

T1 =









k−1
∑

i=0

k−1
∑

ĩ=0

D2Φi,̃i(dm(x)) ei ⊗ eĩ





·
k−1
∑

ĩ=0

n−1
∑

j=0

Ddm,̃i,j(x) eĩ ⊗ fj





·
k−1
∑

i=0

n−1
∑

j̃=0

Ddm,i,j̃(x) ei ⊗ fj̃

=





k−1
∑

i=0

n−1
∑

j=0





k−1
∑

ĩ=0

D2Φi,̃i(dm(x))Ddm,̃i,j(x)



 ei ⊗ fj





·
k−1
∑

i=0

n−1
∑

j̃=0

Ddm,i,j̃(x) ei ⊗ fj̃

=

n−1
∑

j=0

n−1
∑

j̃=0





k−1
∑

ĩ=0

k−1
∑

i=0

D2Φi,̃i(dm(x))Ddm,̃i,jDdm,i,j̃



 fj ⊗ fj̃ (5.19)

and T2 gets

T2 =

(

k−1
∑

i=0

DΦi(dm(x)) ei

)

·





k−1
∑

i=0

n−1
∑

j=0

n−1
∑

j̃=0

D2dm,i,j,j̃(x) ei ⊗ fj ⊗ fj̃





=
n−1
∑

j=0

n−1
∑

j̃=0

(

k−1
∑

i=0

DΦi(dm(x))D2dm,i,j,j̃(x)

)

fj ⊗ fj̃ (5.20)

Switching to our specific Φ (5.11) simplifies these equations a little bit.

Calculating the second derivative of the Φ, we see that it only maps into
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span{ei ⊗ ei : 0 ≤ i < k} ⊂ Rk×k:

Φ(x) = max

(

0, 1 − 1

k

k−1
∑

i=0

x2
i

ε2
i

)

DΦ(x) =
k−1
∑

i=0

DΦi(dm(x))ei

=

{

∑k−1
i=0 −2xi

kε2i
ei, if 1

k

∑k−1
i=0

x2
i

ε2i
≤ 1

0, otherwise

D2Φ(x) =
k−1
∑

i=0

n−1
∑

j=0

n−1
∑

j̃=0

D2dm,i,j,j̃(x) ei ⊗ fj ⊗ fj̃

=















∑k−1
i=0 − 2

kε2i
ei ⊗ ei, if 1

k

∑k−1
i=0

x2
i

ε2i
< 1

∑k−1
i=0 ∞ ei ⊗ ei, if 1

k

∑k−1
i=0

x2
i

ε2
i

= 1

0, otherwise

(5.21)

Thus T1 can be further simplified to

T1 =

n−1
∑

j=0

n−1
∑

j̃=0

(

k−1
∑

i=0

D2Φi,i(dm(x))Ddm,i,j(x)Ddm,i,j̃(x)

)

fj ⊗ fj̃. (5.22)

5.4 Dynamic Switching and Matchlists

Dynamic switching can be adapted to work with the method described above.

Instead of just checking if the interval passed to the one-dimensional Φ, we

have to check if the interval passed to the multi-dimensional Φ overlaps the

ground-ellipse, as seen in figure 5.2.

For our problems qm(x) is of the form qm(x) = Φ(dm(x)). Hence we have

to check if

S(x) =

(

∀ m ∈ M : 1 /∈ 1

k

k−1
∑

i=0

(dm(x))i
2

ε2
i

)

(5.23)

Again, this is cheap to evaluate because the sum has to be evaluated anyway

for the derivatives of Φ.

There is a possible optimization. If we restrict Φ to be larger than zero
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only on the rectangular interval
∏k−1

i=0 [−εi, εi], Φ becomes

Φ(x) =

{

1 − 1
k

∑k−1
i=0

x2
i

ε2i
, if ∀ 0 ≤ i < k − 1 : |xi| < εi

0, otherwise
(5.24)
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Figure 5.3: Plot of the optimized objective function Φ

Figure 5.3 shows a plot of this Φ. This function is still a likelihood

function as the other Φ before. Besides, the rectangular area is exactly the

same rectangular area as it is in Φalt.

Φ can be rewritten by omitting 1
k

as

Φ(x) =

{

∑k−1
i=0 1 − x2

ε2i
, if ∀ 0 ≤ i < k − 1 : |xi| < εi

0, otherwise

=

{

∑k−1
i=0 Φεi

(x), if ∀ 0 ≤ i < k − 1 : |xi| < εi

0, otherwise
(5.25)

where Φεi
is the one-dimensional Φ with ε = εi.

It is not sufficient to just set Φ(x) =
∑k−1

i=0 Φεi
(x). Using this function

may return undesired results. This can be seen in figure 5.4. The area where

the function is larger than zero is infinite. Points do not have to fulfill every

constraint to contribute to the sum.

The advantage in comparison to (5.11) is that not all constraints have to
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Figure 5.4: Plot of a poorly chosen objective function Φ

be evaluated every time. If |dm,i(x)| < εi is true for one constraint, the other

constraints do not have to be evaluated anymore because the contribution to

the sum for that m is already known to be zero. This is even more important

if the constraints are differently expensive to evaluate. Thus, sorting the

constraints to first evaluate the cheaper ones accelerates the method.

The added discontinuity does not matter, because the dynamic switching

function can be changed to check for our interval dm not to overlap the

rectangular boundary.

S(x) = (∀m ∈ M : (∀ 0 ≤ i < k : εi /∈ |dm,i(x)|)
∨ (∃ 0 ≤ i < k : |dm,i(x)|.lo > εi)) (5.26)

Analogously, the method can be easily combined with matchlists. A feature

m has to be removed from the matchlist if

∃0 ≤ i < k : |dm,i(x)|.lo > εi. (5.27)
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5.5 Periodic Distances

Until now, the distance dm,i of a constraint i was restricted to be non-periodic.

Later on, we want to add a constraint on the rotation of the normal of the

point. The dm,i becomes a periodic distance over [−π, π]. For now, periodic

distances will be discussed in general.

Let the periodic distance be dm,i on real values map to [−p, p]. Extend-

ing dm,i to interval arithmetic, the destination interval has to be extended

to the double length to distinguish between the two possible meant areas

that can be specified by the two boundaries of the interval. The lower bound

of the interval has to stay in [−p, p]. This is necessary because the interval

arithmetic previously defined requires for every interval [a, b], a < b. The

additional information needed could alternatively be memorized by exchang-

ing the two bounds, but then, the interval arithmetic needs to be changed.

Therefore the upper option is chosen.

0-p p 2p 3p

0

-p p

p
2

p
2

-

Figure 5.5: Periodic distance mapped onto an interval.

Let the interval extended dm,i map to [−p, 3p]. For example in Figure 5.5,

the upper area between − p

2
and p

2
is described by

[

−p

2
, p

2

]

while the lower

area is described by
[

p

2
, 3p

2

]

. If the dm,i for some reason maps to another

interval, it can be shifted to the interval above by the addition of subtracting

multiples of 2p, because it is periodic.

0-p p 2p 3p

Figure 5.6: Φ on the interval twice as long as the period.

On [−p, 3p], the constraint is fulfilled optimally if dm,i(x) ∈ {0, 2p}.
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Therefore, Φperiodic gets defined as:

Φperiodic(dm,i(x)) = Φ(dm,i(x)) ∪ Φ((dm,i(x) − 2p) ∩ [−p, p]) (5.28)

where Φ(∅) = ∅ and y ∪ ∅ = y. ∅ is the empty interval. If dm,i lies

clearly within [−p, p], Φperiodic should not build the union of Φ(dm,i(x)) and

Φ(dm,i(x) − 2p) because Φ(dm,i(x) − 2p) becomes zero. Therefore cutting,

with [ -p,p] like it is done above handles this situation. It cannot happen the

other way around because we required the lower bound to lie within [−p, p].

However, this only affects the lower bound we get for the current interval.

If we do not need a prove for perfect optimality, this cut can be left out to

further optimize this equation.

Analogously, for the derivatives we get

DΦperiodic(y) = DΦ(y) ∪ DΦ((y − 2p) ∩ [−p, p])

D2Φperiodic(y) = D2Φ(y) ∪ D2Φ((y − 2p) ∩ [−p, p]) (5.29)

where y = dm,i(x).

5.6 Orientation as a second Constraint

As mentioned earlier, using rotation as another constraint additionally to the

position will be tried. The distance between the optimal rotation and the

rotation prescribed by the current interval is 2π periodic. p = π with the

same notation as in the previous chapter.

The following sections describe the different distance functions for rota-

tion for the four problems discussed earlier. Let zero be the constraint on

the position and one the rotational constraint. The vector m describing only

the position of a point m before it is extended by another component:

m =







x

y

w






(5.30)
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mx and my describe the position of the point as before and mw describes the

angle between the normal of the point and the x-axis.

5.6.1 The Line Finding Problem

dm,1 is the easiest for the line finding problem. The rotation of the line only

has to be compared directly with the angle of the normal of point m.

dm,1(w, t) = w − mw (5.31)

The derivatives are

∇dm,1(w, t) =

(

1

0

)

(5.32)

D∇dm,1(w, t) =

(

0 0

0 0

)

= 0 (5.33)

Note that D∇dm,1(w, t) = 0 does not mean Dqm,1(w, t) = 0. The function

dm,1 is obviously twice continuous differentiable everywhere.

5.6.2 The Circle Finding Problem

For the circle finding problem, the rotation of the point m has to be compared

with the normal of the circle defined by x, y and r at the position mx, my,

scaled onto the circle.

dm,1(x, y, r) = atan2(my − y, mx − x) − mw (5.34)

∇dm,1(x, y, r) =
1

(mx − x)2 + (my − y)2







my − y

−(mx − x)

0






(5.35)

90



D∇dm,1(x, y, r) =
1

((mx − x)2 + (my − y)2)2

·







2(mx − x)(my − y) (my − y)2 − (mx − x)2 0

· −2(mx − x)(my − y) 0

· · 0






(5.36)

As already shown in the case where only the position was regarded to

find a circle, the distance between a point contributing to the sum of Q and

the center of the circle
√

((mx − x)2 + (my − y)2) is larger than zero and

therefore, mx 6= x or my 6= y. Thus, dm,1 is twice continuous differentiable.

5.6.3 The Ellipse Finding Problem

An axis aligned ellipse that has its center at (x, y) and lengths of the axes a

and b can be represented by the points m of the ISO line with an ISO value

of one of

F (mx, my) =
(x − mx)

2

a2
+

(y − my)
2

b2
= 1 (5.37)

The gradient of F is perpendicular to the ellipse. Thus, the normal of the

ellipse at a point m is

∇F (mx, my) = 2 ·
(

mx

a2

my

b2

)

(5.38)

We see that for getting the angle of the normal at m, the distances have to

be scaled with the square of the lengths of the ellipse axes before atan2 gets

applied:

dm,1(x, y, a, b) = atan2

(

my − y

b2
,
mx − x

a2

)

− mw (5.39)
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Thus, the derivatives are:

∇dm,1(x, y, a, b) =
1

(mx − x)2b4 + (my − y)2a4

·













−(my − y)a2b2

(mx − x)a2b2

2(mx − x)(my − y)ab2

−2(mx − x)(my − y)a2b













(5.40)

D∇dm,1(x, y, a, b) =
1

((mx − x)2b4 + (my − y)2a4)2

·













d11 d12 d13 d14

d21 d22 d23 d24

d31 d23 d33 d34

d41 d24 d34 d44













(5.41)

d11 = 2(mx − x)(my − y)a2b6

d12 = (my − y)2a6b2 − (mx − x)2a2b6

d13 = 2(my − y)3a5b2 − 2(mx − x)2(my − y)2ab6

d14 = −2(my − y)3a6b + 2(mx − x)2(my − y)a2b5

d22 = −2(mx − x)(my − y)a6b2

d23 = −2(mx − x)(my − y)2a5b2 + 2(mx − x)3ab6

d24 = 2(mx − x)(my − y)2a6b − 2(mx − x)3a2b5

d33 = −6(mx − x)(my − y)3a4b2 + 2(mx − x)3(my − y)b6

d34 = 4(mx − x)(my − y)3a5b − 4(mx − x)3(my − y)ab5

d44 = −2(mx − x)(my − y)3a6b + 6(mx − x)3(my − y)a2b4

(5.42)
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As already shown in the case where only the position was regarded to find an

ellipse, for every point m contributing to the sum of Q, mx 6= x or my 6= y.

Thus, dm,1 is twice continuous differentiable.

5.6.4 Finding Ellipses at Arbitrary Orientations

For the rotated ellipse, every point m has to be rotated according to the

angle w. Additionally, the calculated perfect angle has to be compared to

the difference between the angle mw of the normal of m and the angle of the

ellipse w. The rest of the equation is equal to the axes aligned ellipse:

dm,1(x, y, a, b, w) = atan2

(

vy − y

b2
,
vx − x

a2

)

− (mw − w) (5.43)

vx and vy are defined as:

vx = cos (w)mx + sin (w)my

vy = − sin (w)mx + cos (w)my (5.44)

The first derivative is

∇dm,1(x, y, a, b, w) =
1

v2
xb2

a2 +
v2

ya2

b2

·

















vy

−vx

2vxvy

a

−2vxvy

b

ρ

















(5.45)

ρ = −m2
x − m2

y + (mxx + myy) cos(w) − (mxy − myx) sin(w) (5.46)

The second derivative is

D∇dm,1(x, y, a, b, w) =
1

γ2
·

















d11 d12 d13 d14 d15

d12 d22 d23 d24 d25

d13 d23 d33 d34 d35

d14 d24 d34 d44 d45

d15 d25 d35 d45 d55

















(5.47)
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d11 =
2vxvy

a6b2

d12 =
2v2

y − b4γ

a2b6

d13 =
2vy(2v

2
x − a4γ)

a7b2

d14 =
2vy(2v

2
y − b4γ)

a2b7

d15 =
−vyβ + (−mx cos(w) − my sin(w))γ

a2b2

d22 = −2vxvy

a2b6

d23 =
2vx(−2v2

x + a4γ)

a7b2

d24 =
2vx(−2v2

y + b4γ)

a2b7

d25 =
vxβ − (my cos(w) − mx sin(w))γ

a2b2

d33 =
2vxvy(4v

2
x − 3a4γ)

a8b2

d34 =
4vxvy(2v

2
y − b4γ)

a3b7

d35 = −(2(b2x + a2y − (mya
2 + mxb

2) cos(w) + (mxa
2 − myb

2) sin(w))

(b2x − a2y + (mya
2 − mxb

2) cos(w) − (mxa
2 + myb

2) sin(w))

(m2
x + m2

y − (mxx + myy) cos(w) + (−myx + mxy) sin(w))) · 1

a7b6

d44 =
2vxvy(−4v2

y − 3b4γ)

a2b8

d45 = (2(m2
x + m2

y − (mxx + myy) cos(w) + (−myx + mxy) sin(w))

(b4x2 − a4y2 + (−2mxb
4x + 2mya

4y) cos(w)

+(−m2
ya

4 + a2b4) cos(w)2 − 2(myb
4x + mxa

4y) sin(w)

+(−m2
xa

4 + m2
yb

4) sin(w)2 + mxmy(a
4 + b4) sin(2w)) · 1

a6b7
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d55 = (−a4b4((−myx + mxy) cos(w) + (mxx + myy) sin(w)γ

+2(m2
x + m2

y − (mxx + myy) cos(w) + (−myx + mxy) sin(w)

(mxmy(−a4 + b4) cos(2w) + (mxa
4x + mya

4y) sin(w)

+cos(w)(−myb
4x + mxa

4y + (mx − my)(mx + my)(a
4 − b4) sin(w))))

· 1

a6b6
(5.48)

where

β =
2(−vy)(mx cos(w) + my sin(w))

b4
+

2vx(my cos(w) − mx sin(w))

a4

γ =
v2

x

a4
+

v2
y

b4
(5.49)

As already shown in the case where only the position was regarded to find

a rotated ellipse, for every point m contributing to the sum of Q, vx 6= x or

vy 6= y. Thus, dm,1 is twice continuous differentiable.
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Chapter 6

Evaluation with the

Orientation Constraints

This chapter provides the results of the performance tests between branch

and bound with matchlists and the Interval Newton method with dynamic

switching and matchlists on datasets with points having normals. Addition-

ally, the results get compared to the Interval Newton method not using the

normals.

6.1 The Datasets

We will proceed with the experiments as before without the rotation to en-

able comparisons between the results. The algorithms are tested on different

geometric matching problems. For each problem equivalence classes are de-

fined and representative datasets are selected. Each dataset consists of a set

of points with normals from which the optimal geometry of the particular

problem has to be found. The considered problems are as before:

- line finding

- circle finding

- ellipse finding
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Figure 6.1: Examples of the datasets used in the experiments.

- finding ellipses at arbitrary orientations

See Figure 6.1 for examples of these problems. The domain of the points

is [−1, 1]2. The angle of the normals is [−π, π]. The points get an additional

error on the position and the angle of the normal of 0.01. The equivalence

classes for each problem are:

- Simple data only consisting of points describing the primitive.

- Simple data and additional randomly distributed points.

- Only randomly distributed points.

See Figure 6.2 for examples. The number of points in the three classes is

always 100. For the first class, all points belong to the primitive that has to

be found. For the second class, 50 points belong to the primitive and 50 are

additional random points. The third class only consists of random points.
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Figure 6.2: Examples of the classes of test cases for line finding. From the
left to the right, the pictures show class one to class three.

6.2 Evaluation

The following combination of algorithms and datasets were evaluated:

- The Interval Newton method with dynamic switching and matchlists

ignoring the normal information.

- The branch and bound method with matchlists using normal informa-

tion.

- The Interval Newton method with dynamic switching and matchlists

using normal information.

6.3 The Empirical Results

In this section the results of the tests are discussed. All the described tests

were evaluated this time on an Athlon XP 2000+ with 1 GB of RAM. The

gcc version 3.3.3 with optimization for speed -O2 was used.
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6.3.1 The Line Finding Problem
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Figure 6.3: Speed comparison between the three methods discussed in the
text on the first two classes of datasets for the line finding problem. The
first one is for the plain line, the second for the line with additional random
points.

Figures 6.3 and 6.4 show the results for the three classes for the line

finding problem on the datasets with normals. We can see that the New-

ton method with the additional constraint on the rotation of the normals

performs better than the Newton method without using normals. Also the

branch and bound method is accelerated in the beginning by using the ad-

ditional information. It is even faster than Newton without the rotational
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Figure 6.4: Speed comparison between the three methods discussed in the
text on the third class of datasets, having only random points, for the line
finding problem.

information at the beginning.

There is also another observation to be made: Finding the match for

the second class of datasets is faster than for the first class. Because of

the matchlists, the quality function Q only has to be evaluated over the 50

points forming the primitive in the end while in the first class, all 100 points

belong to the primitive. Additionally, evaluating one addend for Q with the

rotational constraint is more expensive than evaluating one for the quality

function only regarding the position of the points in the datasets. For these

two reasons, finding the solution for the second class of datasets is faster

than for the first with respect to this problem.

For the third class, the Newton method using the rotational information

is the fastest up to an accuracy of 10−9. Afterwards, a situation comparable

to the one described above occurs. The additional constraint produces an

overhead in the end when none of the points that are still in the matchlist

will be removed, while not offering a convergence rate that is high enough to

be faster than the Newton method without using the normals. If really high

accuracy is needed and the input data can be as bad as the datasets in class

three, not using the additional information of the normals is faster. But in

practice, this is hardly the case.
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Figure 6.5: The effectiveness of dynamic switching with respect to the line
finding problem. From top to the bottom, the three equivalence classes are
plotted with respect to the Newton method applied to the datasets with
normals of the points.
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Figure 6.5 shows the number of iterations for a desired accuracy. The

values are averaged over 100 datasets. From the top to the bottom, the

three equivalence classes are plotted with respect to the Newton method

applied on the datasets with normals of the points. The graphs have to be

interpreted as in the previous chapters. For example have a look at figure

4.8. For class one and two, the graphs look nearly the same. For the third

class, the number of branch and bound iterations as well as the number of

Newton iterations again start to increase for high accuracy.

In the rare case that the datasets are not known to represent a primitive

and very high accuracy is needed, the algorithm may take an unintentionally

long time to complete. Otherwise, it is an acceleration compared to the line

finding only using the positional information of the data points.

6.3.2 The Circle Finding Problem

Figures 6.6 and 6.7 show the results for the three classes for the circle finding

problem on the datasets with normals. From the plot of the second class of

datasets, we see that the Newton method with the additional constraint on

the rotation of the normals performs better than the Newton method without

using normals. Again, the branch and bound method gets accelerated in the

beginning by using the additional information like it was for the line finding

problem.

But for the plain circle, the situation is different. Comparing the branch

and bound method and the Newton method using the rotational information,

they behave the same at higher accuracies, but for low accuracies, branch

and bound is more efficient. Comparing the Newton method using the rota-

tional information and the Newton method not using it, the first is faster for

low accuracies while the second is faster for high accuracies. All in all, for

low accuracies up to an accuracy of approximately 0.005, using the branch

and bound method with rotational information was the best and for higher

accuracies, using the Newton method without rotational information was

the best. This can be explained. For these datasets, the filtering effect of

the added constraint on rotation, early ignoring points not belonging to the
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Figure 6.6: Speed comparison between the three methods discussed in the
text on the first two classes of the datasets for the circle finding problem.
The first one is for the plain circle, the second for the circle with additional
random points.

primitive, does not occur because all points belong to the primitive. There-

fore the Newton method ignoring the rotational information is faster than

the Newton method using it.

In the second class, the Newton method with two constraints profits from

the matchlists. It is overall the fastest, except for a small area of accuracy

approximately from 0.001 to 0.002.

For the third class, the added information on rotation accelerates the
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Figure 6.7: Speed comparison between the three methods discussed in the
text on the third class of the datasets, having only random points, for the
circle finding problem.

methods in the beginning. The plain Newton method wastes time on pro-

cessing points that do not have a matching angle of their normals. But for

higher accuracies, the overhead of evaluating the second constraint gets too

high. Note that a graph ending at an accuracy lower than 10−9 means, that

the time needed for calculating the solution for the next power of accuracy

is above the prescribed time limit of 10000 ms in this case. The actual time

needed for that accuracy is not known exactly and therefore not plotted.

Therefore, at an accuracy of approximately 10−5, the plain Newton method

outperforms the methods using the normals.

Figure 6.8 shows the number of iterations for a desired accuracy. For

class one and two, the graphs look nearly the same. For the third class, the

number of branch and bound iterations as well as the number of Newton

iterations again start to increase for high accuracy.

As for the line finding problem, in the rare case that the datasets are not

known to represent a primitive and high accuracy is needed, the algorithm

may take an unnecessarily long time to terminate. If the datasets are simple,

the Newton method not using the normals is more efficient. But at least in

this case, the Newton method using the normals still reaches the point of high

convergence a bit later. For the general problem where points representing
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Figure 6.8: The effectiveness of dynamic switching with respect to the circle
finding problem. From top to the bottom, the three equivalence classes are
plotted with respect to the Newton method applied on the datasets with
normals of the points.
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the primitive and points produced by noise are mixed, it is an acceleration

compared to the line finding only using the positional information of the data

points.

6.3.3 The Ellipse Finding Problem
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Figure 6.9: Speed comparison between the three methods discussed in the
text on the first two classes of the datasets for the ellipse finding problem.
The first one is for the plain ellipse, the second for the ellipse with additional
random points.

Figures 6.9 and 6.10 show the results for the three classes for the ellipse

finding problem on the datasets with normals. From the plot of the first class
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Figure 6.10: Speed comparison between the three methods discussed in the
text on the third class of the datasets, with only random points, for the
ellipse finding problem.

of datasets, we see that the plain Newton method is the best when no noise is

in the data. In the beginning all methods behave the same. At an accuracy

of approximately 0.007, the Newton method not using the normals becomes

more efficient. The overhead of calculating the second constraint does not

turn out to be profitable for this class. For the second and third class, in the

beginning, the methods using the normals are faster than the method not

using them. But at an accuracy of 0.002 for the second class and 10−5 for

the third, ignoring the normals performs better. For the methods that use

the normal information, the point where Newton converges faster by using

Newton steps was not reached within the maximum calculation time of 100

s. It cannot be said from these plots if it actually reaches it, but for real time

applications, 100 s is already too slow.

Figure 6.11 shows the number of iterations for a desired accuracy. We

can also see that the point of high convergence was not reached because the

number of Newton steps is for all three classes very low.

For high accuracies, using the information of the normals decreases the

speed of the solution compared to the ellipse finding method not using the

normals in the earlier chapters. For low accuracies, using the rotation of the

normals as an additional information accelerates the calculation of the solu-
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Figure 6.11: The effectiveness of dynamic switching with respect to the ellipse
finding problem. From top to the bottom, the three equivalence classes are
plotted with respect to the Newton method applied on the datasets with
normals of the points.
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tion. Whether this information gets used by the branch and bound method

or the Newton method is not important, both methods behave practically

the same for this problem.

6.3.4 Finding Ellipses at Arbitrary Orientations
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Figure 6.12: Speed comparison between the three methods discussed in the
text on the first two classes of the datasets for the rotated ellipse finding
problem. The first one is for the plain ellipse, the second for the ellipse with
additional random points.

Figures 6.12 and 6.13 show the results for the three classes for the rotated

ellipse finding problem on the datasets with normals. As for the previous
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Figure 6.13: Speed comparison between the three methods discussed in the
text on the third class of the datasets, having only random points, for the
rotated ellipse finding problem.

problems, we see that at the beginning the methods using the normals are

faster than the Newton method ignoring them, whereas the advantage is

greatest for the second class of datasets. For the first class, the advantage

is already smaller while for the third class, it vanishes completely. For class

one and two and higher accuracies, the plain Newton method outperforms

the methods using the normals. Once again the additional calculation of the

rotational constraint produces a computational overhead while not removing

any more points from the matchlists.

The plots of the number of iterations spent with the different types of

steps are left out. They look the same for each of the three classes of the

datasets. Hardly any Newton steps were made within the prescribed time.

Figure 6.14 shows the 100 representatives of the second class of datasets

for three accuracies of the branch and bound method and the Newton method

using the normal information. The behavior of the methods averaged over

the 100 datasets stays the same. But comparing single datasets, we see that

at some point, here it is the case for the highest accuracy plot, the methods

perform differently. There are still some datasets where both methods need

the same time, but also some datasets where the branch and bound method

or the Newton method is faster.
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Figure 6.14: The 100 representatives of the class of the rotated ellipse
datasets with random points were used. The first shows the times to get
an accuracy of 10−1.25, the second the times needed for an accuracy of 10−2

and the third for an accuracy of 10−4, per parameter in parameter space.
Times are given in milliseconds.

For high accuracies, using the information of the normals decreases the

speed of the solution compared to the rotated ellipse finding method not us-

ing the normals in the earlier chapters. For low accuracies, using the rotation

of the normals as additional information accelerates the calculation of the so-

lution. Whether this information gets used by the branch and bound method

or the Newton method is not important, both methods behave practically

the same for this problem.
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6.4 Analysis of the Results

Adding a second constraint on the rotation of the normals of the point fea-

tures accelerates the primitive finding problem for the line and the circle in

the common case where a primitive is described in the input data mixed

with points from the background noise. In combination, Newton is a more

efficient choice than branch and bound for high accuracies. At some point

for datasets with a lot of background noise, the evaluating of the second

constraint may waste time compared to the plain position based methods.

Normal information should not be used this way if the input data is noisy.

For the ellipse finding and rotated ellipse finding problem, using the nor-

mal information accelerates the problem for low accuracies. For higher accu-

racies, not using them is more efficient. It depends on the desired accuracy, if

the branch and bound method using the normal information or if the Newton

method only using the positions of the points should be used.

A general observation is: Using the normal information has the effect of

determining early if a point is consistent to the searched primitive or not.

In combination with the Matchlists, this explains the acceleration of the

methods in the beginning phase of the algorithm execution.

112



Chapter 7

Conclusion

In this thesis, a combination of the branch and bound method on interval

arithmetic and the Interval Newton method was presented. The method

was adapted to work efficiently with only requiring locally twice continuous

differentiable functions by introducing dynamic switching and therefore is

well suited for robust matching problems. The method also makes use of

matchlists for acceleration.

The following robust geometric matching problems were discussed: The

line finding, the circle finding, the ellipse finding and the rotated ellipse find-

ing problem. They were formalized to be used with the method introduced.

Once with only a constraint on the position of the points in the dataset and

once with an additional constraint on the angle of the normal of the points.

Experimental results were shown, comparing variations of the branch and

bound method and the Interval Newton method with and without match-

lists and dynamic switching. For the line and circle finding problem, the new

combined method accelerated the solution clearly. Especially, when the nor-

mal information is used, the problems were solved fast. For practical cases,

it outperformed the other methods that it was compared with or at least

was as good as them, reaching times of < 20 ms for the line finding problem

and < 100 ms for the circle finding problem, on the datasets used using the

normal information. For the ellipse and rotational ellipse finding problem,

the method also accelerates the solution, but it is still much slower than the
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line and circle finding problem. For higher accuracies, it is better not to use

the normal information.

7.1 Future Work

There are some ideas that could still be tried:

For the ellipse and rotational ellipse finding problem, it could be tried

to switch between using the rotational information and not using it at some

point. However, by switching this, the problem definition changes and the-

oretically, the result is not clear. Practically it probably works and perhaps

the problem definition can be tweaked to also be theoretically a clearly de-

fined optimization problem. A criteria which decides whether to use the

rotational information or not is needed for this approach.

For the line finding problem, the idea of reducing the number of features

by matching on datasets consisting of line segments instead of points as it

was done by Breuel in his RAST implementation in [2] and [4], perhaps also

might be accelerated by using the Newton method. The problem is, defining

the optimization problem for the line finding problem on line segments gets

more complicated and therefore, the terms of the derivatives also get more

complicated and expensive to evaluate. The overhead may overcome the

benefit of this approach, resulting in lower efficiency. But maybe, this effect

only occurs for very high accuracies. If faster line matching is needed, this

could be tried.

The methods used here only find one primitive in the dataset and after-

wards the algorithm terminates. In practice, one may want to find several

primitives. It is possible to extend the algorithm to find a number n of prim-

itives by removing the points belonging to primitives already found from the

dataset and continuing the search with the current list of intervals to process.

Removing points from the dataset while running the algorithm is safe. The

only thing that could happen is that the quality of an interval in the list is

too high. But since the quality in the list is an upper limit for the quality of

all points in an interval, this is no problem.
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